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Preface

The methods of (Co-) Homological Algebra provide a framework for Al-
gebraic Geometry and Algebraic Analysis. The following two books were
published during the late 1950’s:

[CE] Cartan, H., Eilenberg, S., Homological Algebra, Princeton University Press
(1956), and

[G] Godement, R., Topologie Alg ‘ebraique et Th eorie des Faisceaux, Hermann,
Paris (1958).

If you are capable of learning from either of these two books, I am afraid that
The Heart of Cohomology, referred to hereafter as [THOC], is not for you. One
of the goals of [THOC] is to provide young readers with elemental aspects of
the algebraic treatment of cohomologies.

During the 1990’s

[GM] Gelfand, S.I., Manin, Yu., L., Methods of Homological Algebra, Springer—
Verlag, (1996), and

[W] Weibel, C.A., An Introduction to Homological Algebra, Cambridge Univer-
sity Press, (1994)

were published. The notion of a derived category is also treated in [GM] and
[WI.

In June, 2004, the author was given an opportunity to give a short course ti-
tled “Introduction to Derived Category” at the University of Antwerp, Antwerp,
Belgium. This series of lectures was supported by the European Science Foun-
dation, Scientific Programme of ESF. The handwritten lecture notes were dis-
tributed to attending members. [THOC] may be regarded as an expanded ver-
sion of the Antwerp Lecture Notes. The style of [THOC] is more lecture-like
and conversational. Prof. Fred van Oystaeyen is responsible for the title “The

1X



X Preface

Heart of Cohomology”. In an effort to satisfy the intent of the title of this book,
a more informal format has been chosen.

After each Chapter was written, the handwritten manuscript was sent to
Dr. Daniel Larsson in Lund, Sweden, to be typed. As each Chapter was typed,
we discussed his suggestions and questions. Dr. Larsson’s contribution to
[THOCT] is highly appreciated.

We will give a brief introduction to each Chapter. In Chapter I we cover some
of the basic notions in Category Theory. As general references we recommend

[BM] Mitchell, B., The Theory of Categories, Academic Press, 1965, and
[SH] Schubert, H., Categories, Springer-Verlag, 1972.
The original paper on the notion of a category

[EM] Eilenberg, S., MacLane, S., General Theory of Natural Equivalences, Trans.
Amer. Math. Soc. 58, (1945), 231-294

is still a very good reference. Our emphasis is on Yoneda’s Lemma and the
Yoneda Embedding. For example, for contravariant functors F' and G from a
category % to the category Set of sets, the Yoneda embedding

TG s € = Set?”

gives an interpretation for the convenient notation F'(G) as

F(G) = Hom (G, F)

(See Remark 5.)

We did not develop a cohomology theory based on the notion of a site.
However, for a covering {U; — U} of an object U in a site ¢, the higher
Cech cohomology with coefficient F € Ob(Ab("gJo ) is the derived functor of the
kernel of

[1F @) &I Fw; < Uy).

This higher Cech cohomology associated with the covering of U is the coho-
mology of the Cech complex

C'({U — U} F) = [[ F(Uiy xv -+ xu Uyy).

One can continue the corresponding argument as shown in 3.4.3.

In Chapter II, the orthodox treatment of the notion of a derived functor for
a left exact functor is given. In 2.11 through Note 15, a more general invariant
than the cohomology is introduced. Namely for a sequence of objects and
morphisms in an abelian category, when the composition d> = 0 need not
hold, we define two complexifying functors on the sequence. The cohomology
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of the complexified sequence is the notion of a precohomology generalizing
cohomology. The half-exactness and the self-duality of precohomologies are
proved. As a general reference for this Chapter,

[HS] Hilton, P.J., Stammbach, U., A Course in Homological Algebra, Graduate
Texts in Mathematics, Springer-Verlag, 1971

is also recommended.

In Chapter III, we focus on the spectral sequences associated with a dou-
ble complex, the spectral sequences of composite functors, and the spectral
sequences of hypercohomologies. For the theory of spectral sequences, in

[LuCo] Lubkin, S., Cohomology of Completions, North-Holland, North-Holland
Mathematics Studies 42, 1980

one can find the most general statements on abutments of spectral sequences.
In [THOC], the interplay of the above three kinds of spectral sequences and
their applications to sheaf cohomologies are given.

In Chapter 1V, an elementary introduction to a derived category is given.
Note that diagram (3.14) in Chapter IV comes from [GM]. The usual octahedral
axiom for a triangulated category is replaced by the simpler (and maybe more
natural) triangular axiom:
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A schematic picture for the derived functors RF' between derived categories
carrying a distinguished triangle to distinguished triangle may be expressed as

/ RFA\_/ :

As references for Chapter 1V,

[HartRes] Hartshorne, R., Residues and Duality, Lecture Notes Math. 20, Springer-
Verlag, 1966, and

[V] Verdier, J.L., Catégories triangulées, in Cohomologie Etale, SGA41, Lec-
ture Notes Math. 569, Springer-Verlag, 1977, 262-312.

need to be mentioned.

In Chapter V, applications of the materials in Chapters III and IV are given.
The first half of Chapter V is focused on the background for the explicit com-
putation of zeta invariances associated with the Weierstrass family. We wish
to compute the homologies with compact supports of the closed fibre of the
hyperplane

Y2 =4X3 — g2 X 7% — g3 73

in P2 (A),A:= Zp (g2, g3], where X, Y, Z are homogeneous coordinates (or the
open subfamily, i.e., the pre-image of Spec((Z/pZ)[g2, g3]a), i.e., localized
at the discriminant A := g3 — 27¢3, p # 2,3). Let U be the affine open
family in the above fibre, i.e., “Z = 1”. Then we are interested in a set of
generators and relations for the AT ®z Q-module H! (U, AT ®7 Q). For p in the
base Spec((Z/pZ)]g2, g3]) (or Spec((Z/pZ)[g2, g3]a), the universal spectral
sequence is induced so as to compute the zeta function of the fibre over p (or
elliptic curve over p).

We also decided to include a letter from Prof. Dwork in 5.2.4 in Chapter V
since we could not find the contents of this letter elsewhere.

In the second half of Chapter V, only some of the cohomological aspects of
2-modules are mentioned. None of the microlocal aspects of Z-modules are
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treated in this book. One may consider the latter half materials of Chapter V
as examples and exercises of the spectral sequences and derived categories in
Chapters III and IV.

Lastly, I would like to express my gratitude to my mathematician friends in
the U.S.A., Japan and Europe. I will not try to list the names of these people
here fearing that the names of significant people might be omitted. However,
I would like to mention the name of my teacher and Ph.D. advisor, Prof. Saul
Lubkin. I would like to apologize to him, however, because I was not able to
learn as much as he exposed me to during my student years in the late 1970’s.
(I wonder where my Mephistopheles is.) In a sense, this book is my humble
delayed report to Prof. Lubkin.

Tomo enpouyori kitari
mata tanoshi karazuya. ..

Goro KaTo

Thanksgiving Holiday with my Family and Friends, 2005



Chapter 1

CATEGORY

1.1  Categories and Functors
The notion of a category is a concise concept shared among "groups and

"non nn

group homomorphisms", "set and set-theoretic mappings", "topological spaces
and continuous mappings", e t c.

Definition 1. A category € consists of objects, denoted as X, Y, Z, ..., and
morphisms, denoted as f, g, ¢, 19, o, 3, . ... Forobjects X and Y in the category
¢, there is induced the set Home (X,Y) of morphisms from X to Y. If

¢ € Homy(X,Y) we write ¢ : X — Y or X 2y, Then, for¢ : X — Y
and ¢ : Y — Z, the composition ¢ o ¢ : X — Z is defined. Furthermore,

for X &> v %z % W, the associative law y o (1) o ¢) = (y o)) o ¢
holds. For each object X there exists a morphism 1x : X — X such that
for f: X - Yandforg: Z — X wehave foly = fandlxog = g.
Lastly, the sets Home (X, Y') are pairwise disjoint. Namely, if Hom4 (X, Y) =
Homg (X', V'), then X = X' and Y =Y.

Note 1. When X is an object of a category € we also write X € Ob(%), the
class of objects in %@. Note that a category is said to be small if Ob(%) is a set.

Example 1. The category Ab of abelian groups consists of abelian groups and
group homomorphisms as morphisms. The category Set of sets consists of sets
and set-theoretic maps as morphisms. Next let 7" be a topological space. Then
there is an induced category .7 consisting of the open sets of 7" as objects. For
open sets U,V C T, the induced set Hom (U, V') of morphisms from U and
V consists of the inclusionmap ¢ : U — V if U C V, and Hom (U, V) an
empty setif U € V.

Remark 1. For the category Ab we have the familiar element-wise definitions
of the kernel and the image of a group homomorphism f from a group G to

1



2 Category

a group H. We also have the notions of a monomorphism, called an injective
homomorphism, and of an epimorphism, called a surjective homomorphism in
the category Ab. For a general category ¢ we need to give appropriate defini-
tions without using elements for the above mentioned concepts. For example,
¢: X — Y in % is said to be an epimorphism if f o ¢ = g o ¢ implies f =g
where f,g : Y — Z. (This definition of an epimorphism is reasonable since
the agreement f o ¢ = go ¢ only on the set-theoretic image of ¢ guarantees that
f =g¢.) Similarly, ¢ : X — Y is said to be a monomorphismif po f = ¢pog
implies f = g where f,g : W — X. (This is reasonable since there can not be
two different paths from W to Y'.) In order to give a categorical definition of an

image of a morphism, we need to define the notion of a subobject. Let W 2 x

and W' 25 X be monomorphisms. Then define a pre-order (W', ¢') < (W, ¢)
if and only if there exists a morphism ) : W/ — W satisfying ¢ o ) = ¢'.
Notice that ) is a uniquely determined monomorphism. If (W, ¢) < (W', ¢’)
also holds, we have a monomorphism ¢’ : W — W’ satisfying ¢’ o)’ = ¢ and
sopotpor) =¢ o)) =¢ = ¢oly.Since ¢ is a monomorphism we have
1 o)’ = 1y . Similarly, we also have 1)’ o ¢ = 1y+. This means that ¢ is an
isomorphism, and (W, ¢), (W', ¢') are said to be equivalent. A subobject of
X is defined as an equivalence class of such pairs (W, ¢). A categorical, i.e.,
element-free, definition of the image of a morphism ¢ : X — Y may be given
as follows. Consider a factorization of ¢

\ TL (1.1)
¢/

where (Y”, 1) is a subobject of Y. For another such factorization (Y, /'), if
there exists a morphism j : Y — Y satisfying . = ¢/ o j, then (Y, ) is said
to be the image of ¢. Intuitively speaking, shrink Y as much as possible to Y’
so that factorization is still possible. Namely, the image of ¢ is the smallest
subobject (Y, ) to satisfy the commutative diagram (1.1). On the other hand,
the kernel of ¢ : X — Y can be characterized as the largest subobject (X', 1)
of satisfying ¢ o+ = 0 in

T / (12)
¢/
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1.1.1  Cohomology in Ab

For a sequence
X 2. Y N Z
in Ab, the cohomology group at Y is defined as the quotient group of Y’
ker w/imgb (1.3)

provided im ¢ C ker 1), i.e., for y = ¢(x) € im ¢ we have ¥(y) = 0, or in still
other words, 1(y) = ¥(é(x)) = (¢ 0 ¢)(x) = 0.

1.1.2  The functor Homq (-, -)

Let us take a close look at the set of morphisms Hom¢ (X, Y) in Definition
1. Firstconsider Homg (X, X ). Recall that there is a special morphism from X
to X, call it 1x, satisfying the following. Forany ¢ : X — Y andv¢ : Z7 — X
wehave 1x oYy =9 and polx = ¢ in

1
7o x Xox 2y (1.4)

Then 1x is said to be an identity morphism as in Definition 1, (i).
Next delete Y in the expression Homy (X, Y') to get Homy (X, ). Then,
regard Homy (X, -) as an assignment

Homg (X, ) : € — Set

1.5
Y — Homg (X,Y). (15)

Similarly we can consider

Homy (-, Y) : € — Set (16)

X — Homg (X,Y). '
That is, when you substitute Y in the deleted spot of Hom¢ (X, -), you get the
set Homy (X, Y) of morphisms. For two objects Y and Y’ we have two sets
Homy (X, Y') and Homy (X, Y”). Then for a morphism 3 : Y — Y’ consider
the diagram

X

y Yd’ (1.7)
8

Y Y’
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This diagram indicates that for ¢ € Home (X, Y), we get fo¢p € Home (X, Y').
Schematically, we express this situation as:

g:Y Y in¥%
Hom%(X,-)g (18)
Homg (X, ) : Homy (X,Y) —— Homg(X,Y’) in Set

where Homy (X, 5)(¢) := (o ¢.
On the other hand, when X is deleted from Homg (X, Y"), we get (1.6). But
X

for X % X', i.e., considering
o X/
¢\\ % (1.9)

o«
Y
1 € Homy (X', Y') induces ¥ o a € Homg (X, Y). Schematically,

a: X X' in¢
!
Homg(-,Y)é (1.10)
Homg (,Y) : Homy (X,Y) <—— Homg (X', Y)  in Set

Notice that the direction of the morphism in (1.10) is changed as compared with
Homy (X, ) in (1.8).

Definition 2. Let ¢ and ¢” be categories. A covariant functor from € to ¢’
denoted as F' : € ~» €”, is an assignment of an object "X in €” to each object
X in ¢ and a morphism Fa from F'X to F X’ to each morphism o : X — X’
in ¢ satisfying:
(Funcl) For X & X/ 2, X" in € we have

F(d'oa)=Fd o Fa.
(Func2) Forly : X — X wehave Fly = 1lpx : X — FX.

Condition (Func1) may schematically be expressed as the commutativity of

X %X FX 2% px
a& J(O/ F(m iFO/
X FX" (1.11)

iné in ¢’
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Example 2. In Definition 2, let ¢’ = Set and let F' = Homg (X, ). Then one
notices from (1.8) that Hom (X, ) : ¥ ~~ Set is a covariant functor.

Note 2. Similarly, a contravariant functor F : € ~» €' can be defined as
in Definition 2 with the following exception: For o : X — X’ in ¢, Fa
is a morphism from F X’ to FX in %', i.e., as in (1.10) the direction of the

morphism is changed. Notice that Home (-, Y) is a contravariant functor from
¢ to Set.

Before we begin the next topic, let us confirm that the covariant functor
Homy (X, ) : € ~ Setsatisfies Condition (Func2) of Definition 2. To demon-
strate thlS. forly : Y — Y, indeed

Homg (X, 1y ) : Homg(X,Y) — Homy (X, Y)
is to be the identity morphism on Hom¢ (X, Y), i.e
Homg (X, 1y) = THomy (x,v)-

Let o € Homg (X, Y') be an arbitrary morphism. Then consider

/ Y“‘ * (1.12)

which is a special case of (1.7). As shown in (1.8), the definition of

Homg¢ (X, 1y ) : Homg(X,Y) — Homy (X, Y)
is & — 1y o a = a. Namely, Hom¢ (X, 1y) is an identity on Home (X, Y').

1.2 Opposite Category

Next, we will define the notion of an opposite category (or dual category).
Let & be a category. Then the opposite category ©’° has the same objects as
%. This means that the dual object X° in €° of an object X in ¥ satisfies
X° = X. We will use the same X even when X is an object of °. Let X and
Y be objects in €°, then the set of morphisms from X to Y in € is defined as
the set of morphisms from Y to X in %, i.e.,

Homyo (X,Y) = Homg (Y, X). (2.1)
Note that %° is also called the dual category of €. Recall that

Homy (X, ) : € ~ Set
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is a covariant functor. Let us replace % by ¢°. Then we have
Homgo (X, -) : €° ~ Set.

LetY & Y'bea morphism in % Then in €° we have Y <2~ Y’. The

covariant functor Homyo (X, -) takes Y «— Y’ in €° without changing the
direction of ¢° to

Homyo (X,Y) <—— Homgo (X, Y”)
in Set. From (2.1) we get
Homyo (X,Y) = Homg (Y, X) <—— Homgo (X, Y’) = Homg (Y, X) .

Schematically, we have

In%° : Y<LY’ .
o g (2.22)
[

In% : Y —Y’

Applying Homg- (X, ) to the top row and Home (-, X) to the bottom row, we
get:

Homgo (X,Y) <— Homgo (X, Y”)
(2.2b)

Homy (Y, X) <—— Homy (Y, X)

in Set. Generally, for a covariant functor F' : ¢ ~ %”, there is induced a
contravariant functor F' : €° ~» %’. On the other hand, F : € ~~ €'
becomes contravariant.

1.2.1 Presheaf on .7

In Example 1, we defined the category .7 associated with a topological space
T'. Let us consider a contravariant functor F' from .7 to a category .o/. Namely,
forU — Vin .7, we have FU «— FV in «7. (Asnoted, ' : T° ~~ & isa
covariant functor.) Then F' is said to be a presheaf defined on .7 with values
in 7. In the category of presheaves on .7

T =ad7", (2.3)

an object is a covariant functor (presheaf) from .7° to <7, and a morphism f of
presheaves F' and G is defined as follows. To every object U of .7, f assigns
a morphism

fu: FU — GU (2.4)
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in 7. Generally, for categories 4" and ¢, let
¢ =¢" (2.5)

be the category of (covariant) functors as its objects. For functors F' and G, a
morphism f : ' — G is called a natural transformation from F to G and is
defined as an assignment f; : FU — GU for an object U in €. Additionally
f must satisfy the following condition: for every U = V in €, the diagram

rU—1" U
lFa lGa (2.62)
rv— av

commutes, i.e., fy o Fa = Gao fy in ¢”. Therefore, a morphism f : F' — G
in .7 = o/7° must satisfy the following in addition to (2.4). For ¢ : U — V
in 7 (ie., U < Vin .7°),

rU—1" U
Fﬁ @T (2.6b)
rv— av

must commute. Important examples of 7 are the cases when &/ = Set and
&/ = Ab. We will return to this topic when the notion of a site is introduced.

1.3  Forgetful Functors

Let A be an abelian group. By forgetting the abelian group structure, A
can be regarded as just a set. Namely, we have an assignment S : Ab ~» Set.
For a group homomorphism ¢ : A — B in Ab, assign the set-theoretic map
S¢ : SA — SB. One may wish to check axioms (Funcl) and (Func2) of
Definition 2 for the assignment S. Consequently S is a covariant functor from
Ab to Set. This functor S is said to be a forgetful functor from Ab to Set.

Definition 3. Let " and € be categories. Then ¢ is a subcategory of € when
the following conditions are satisfied.

(Subcatl) Ob(%”") C Ob(%) and for all objects X and Y in ¢,
HOchg/()(7 Y) C Homcg(X, Y)

(Subcat2) The composition of morphisms in 4" is coming from the composition
of morphisms in ¢, and for all objects X in%” the identity morphisms
1x in ¢’ are also identity morphisms in %
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Example 3. Let V' be the category of finite-dimensional vector spaces over a
field £ and let 'V be the category of vector spaces over £ and where the morphisms
are the /-linear transformations. Then V' is a subcategory of V. Let Top be the
category of topological spaces where the morphisms are continuous mappings.
Then Top is a subcategory of Set.

Remark 2. Note that we have Homy/ (X,Y) = Homvy(X,Y), since the ¢-
linearity has nothing to do with dimensions. In general, when a subcategory
€' of a category ¢ satisfies Homg/(X,Y) = Homeg (X, Y) for all X and Y’
in ¢, ¢’ is said to be a full subcategory of €.

1.4 Embedddings

Let # and € be categories. Even though 4 is not a subcategory of €', one
can ask whether Z can be embedded in ¢ (whose definition will be given in the
following). Let F' be a covariant functor from % to €. Then for f : X — Y
in # we have FX — FY in %. Namely, for an element f of Homg(X,Y)
we obtain F'f in Home (F X, FY'). That is we have the following map F:

F :Homgyg(X,Y) —— Homg (FX,FY)
(4.1)

fi F(f)=Ff

If Fis injective, F' : A ~~ € is said to be faithful, and if Fis surjective, F
is said to be full. Furthermore, F' is said to be an embedding (or imbedding) if
F is not only injective on morphisms, but also F is injective on objects. That
is, ' : & ~» € is said to be an embedding if F' is a faithful functor and if
FX = FY implies X = Y. Then % may be regarded as a subcategory of
%. We also say that F' : B ~» € is fully faithful when F is full and faithful.
A functor F' : B ~» € is said to represent ¢ when the following condition is
satisfied: For every object X’ of ¢ there exists an object X in 4 so that there
exists an isomorphism from F X to X’. If a fully faithful functor F' : B ~ €
represents % then F'is said to be an equivalence. Furthermore, an equivalence F'
is said to be an isomorphism if F' induces an injective correspondence between
the objects of # and ¥. The notion of an equivalence F' can be characterized
by the following.

Proposition 3. A functor F' : B ~~ € is an equivalence if and only if there
exists a functor F' : € ~ B satisfying

(Eqv) F'o F and F o F' are isomorphic to the identity functors 14 and 1,
respectively.

Proof. Let f : Z — Z' be a morphism in 4. Since F represents €, there are
objects X and X’ in Zsothat FX — Zand FX' L Z’ are isomorphisms in €.
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Then we have the morphism j o foi: FX — FX'. Define f := j 1o foi.
Since F' is fully faithful there exists a unique morphism f'+ X > X'in B
satisfying Ff/ = f. Then define F'f := f’. Namely, we have F'Z = X
and F'Z' = X'. Note that F’ becomes a functor from % to 4. From the
commutative diagram

BR

FX :
f:=jlofoz¢ lf 4.2)

~

FX' ; A

in €, we get the commutative diagram in %
F'FX ——~F7Z=X
| | e (43)
FFX' - FZ = X'.
From the definition of F”, i.e., F'Z = X and (4.2), we also get

FFZ——1Z

T

FFE'Z % 7

We obtain F' o F ~ 1z and F o F' =~ 1.

Conversely, assume (Eqv). For an object Z of € we have an isomorphism
(FoFZ 2 14Z = Z. Let X = F'Z. Then FX = Z. Therefore, F
represents ¢’. Consider F of (4.1), i.e.,

F :Homg(X, X') — Homg (FX, FX').
Suppose that Ff = Fg for f,g € Homgk(X,X'). We have Ff = Fg
which implies F/Ff = F'Fg. Since F' o F = 14, f = g. Therefore
F is faithful. Let ¢ € Homy(FX, FX'). Since F represents 4, we have
isomorphisms F(F'FX) % FX and F(F'FX') % FX'. That is,

we have the commutative diagram
FF'FX ——FX

J{F(F%ﬁ) l¢> (4.5)
FF'FX' % FX'.
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Then F'¢: FFFX — F'FX', ie., F'¢ € Homg(X, X') satisfying
F(F'¢)=(FoF')¢ =150 = ¢.

Therefore, F'is full.

Remark 3. When there is an equivalence F' : %4 ~» €, 2 may be identi-
fied with ¢ in the following sense. If there are objects X and X’ in % hav-

ing isomorphisms F'X L Zand FX' L Z then we get the isomorphisms
FFEX 25 Pz and FEX 22 F'7. Namely,

Considering Z’ as isomorphic to Z we can conclude that there is a bijective
correspondence between isomorphic classes of Z and %

1.5 Representable Functors

First recall from (1.9) that Home (-, X) is a contravariant functor from % to
Set. Let G also be a contravariant functor from %’ to Set. Namely, Hom (-, X)
and G are objects of % = Set?” asin (2.5) and (2.6a). For G € Ob(‘f), if
there exists an object X in % so that Homg (-, X) is isomorphic to G in the
category €, then G is said to be a representable functor. We also say that G
and X := Homg(-, X ) are naturally equivalent. That is, there is a natural
transformation a : X — G (e, o is a morphism in %) which gives an
isomorphism for every object Y in €

ay : X(Y) = Homg (Y, X) — GY. (5.1)

Such an « is said to be a natural equivalence.

1.5.1 Yoneda’s Lemma

Let I be an arbitrary contravariant functor from acategory % to Set. For two
objects F'and X = Homcg( ) of € = Set”", consider the set Hom. , (X F)

of all morphisms in % from X to F, i.., Hom, (X F') is the set of all the

natural transformations from X to F. The Yoneda Lemma asserts that there is
an isomorphism (i.e., a bijection) between the sets Hom (X, F') and F'X. If

an element of Hom, > (X F) is written vertically as

F
T (5.2)

X
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the reader with a scheme-theoretic background might consider such a morphism
as (5.2) as an X -rational point on F', suggesting Hom, (X F)~ F(X). Asthe
functor ~: € ~» € will later be shown to be an embedding, the identification

of X with X would be appropriate. Namely, F'X might be interpreted as the
set of all the X -rational points on F'.

Proposition 4 (Yoneda’s Lemma). For a contravariant functor F' from a cate-
gory € to the category Set of sets, there is a bijection

Hom, (X F)~ FX, (5.3)
where X is an arbitrary object of €.

Proof. Letr € Hom, (X F),ie.,r: X — F isanatural transformation. For
X itself, we have _

ry: XX — FX. (5.4)
Then for 1x € XX = Homy (X, X), rx(1x) is an element of F"X. Namely,
we obtain a map « from Hom, > (X F)to FX defined by a(r) = rx(1x). We

will show that this map « is abijection. Define amap from F' X to Hom. (X F)
as follows. Let z € F'X. Then we need a natural transformation d)x from
X to F. That is, for an arbitrary object Y of ¢ we need a map ¢, y from

XY = Homy (Y, X) to FY . Consider the following commutative diagrams:

Y

f=1xof
fi \1 (5.52)

X7 7X
X

XX =Homy (X, X) —= FX
lHomcg(f,X) lFf (5.5b)
XY = Homy (Y, X) —= FY.

Then for f € XY = Homg (Y, X), Ff : FX — FY gives (Ff)(z) € FY.
Thatis, forx € F'X, the map ¢, y from XY — FYisgivenby f — (Ff)(z).
We are ready to compute the compositions of these maps. First we will prove
a(¢y) = x. By definition of «, a(¢y) = ¢4 x (1x). That s, for ¢, : X > F,
¢z x is the map from XX — FX. Then, by the definition of ¢, x, we have
¢2.x(1x) = (Flx)(x) = 1px(xz) = x. Conversely, let r € Hom,, (X F).
Then a(r) = rx(1x) € FX. We need to show ¢, (1) = 7 as natural
transformations in Hom,» (X F'). That is, for an arbitrary object Y in €, we
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Figure 1.1. Nobuo Yoneda. Provided by Iwanami-Shoten, Inc.

must show ¢, (1) y = 7y as maps from XY = Homy (Y, X) to FY. Now
we will compute: for f € XY = Home (Y, X)), the definition of ¢, y implies
¢rx(1x),Y(f) = (Ff)(rx(1x)). In (5.5b) we regard (F'f)(rx(1x)) as the
clockwise image of 1x € X X. Next, we will consider the counterclockwise
route of (5.5b) for 1x € X X. First (5.5a) implies that

Homy (f, X)(1x) = f € XY.
For the given r € Hom(&;(f( , ) the commutativity of (5.5b) implies
ry (f) = (Ff)(rx(1x))

for any Y € Ob(%) and for any f € XY

Note 5. Notice that the Yoneda Lemma is also valid for a covariant functor
F :% ~» Setand X = Homy (X, ).

Remark 4. For the Yoneda bijection Hom(é(f( ,F') = FX, consider the case
where the contravariant functor F' is representable and represented by X' €
Ob(%’). Namely, we have

Hom, (X, F) ~ Hom (X, X') = X'X ~ FX.
Since X'X = Homy (X, X'),
Hom, (X, X') ~ Home (X, X'). (5.6)

Notice that X = Homg (-, X) is a contravariant functor from % to Set but the
functor ~ from % to ¥ is covariant as seen from (5.6). From the bijection in
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(5.6), the functor ~ is fully faithful. And for any two objects X and X' in
¢,if X = X' in €, we must have XY = X'Y for any object Y of €. Then
Homg (Y, X) = Homg (Y, X’) implies X = X’ by Definition 1 of a category.
Namely, ~ is an embedding. The functor

TG E
is called the Yoneda embedding.
Remark 5. Consider the following diagram of categories and functors:

~

¢

v

L ~
N\\F , contrav.
covar.) ~ L ( 5.7 )

Y
N
G~~~ Set

contrav.

where F' = Hom (-, F') : % ~~ Set is a contravariant functor. The commu-
tativity of (5.7) is equivalent to the statement of Yoneda’s Lemma (Proposition
4). If F' is used, the Yoneda bijection (5.3) becomes the lifting formula of

(F,X)e€xCto(F,X)c€ x%E:
FX ~ FX. (5.8)

Thenfor f:Y — Xin%,¢:F — F'in% and ¢ : F — F’ in € we have
the commutative diagram in Set:

F'f
F'X F'Y
A
Ef
FX FY ~
~ 5.9
o F'f ~ ~
~  FX — Py
V ¢f/
o Ff .
FX FY

where all the vertical morphisms are Yoneda’s isomorphisms (bijections) in Set.
Notice also that ~ (¥¢) := {X | X € Ob(%) } forms a subcategory of %"

1.6  Abelian Categories

In the category Ab of abelian groups, for a group G consisting of one element
G = {0g}, there is only one morphism in Homa,(G’, G) foreach G’ € Ob(Ab).
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In the category Set, a set of one element plays the same role. Namely, in
general, for a category %, an object Z of ¢ is said to be a terminal object
if the set Home (X, Z) has exactly one element for each X. An object A is
said to be an initial object if the set Homy (A, X) has exactly one element for
every X € ODb(%). An object 0 of ¢ is said to be a zero object for € if 0
is both terminal and initial. Notice that for terminal objects Z and Z’ in €
we have fZ, : Z — Z' and f? : Z' — Z and we have 17 : Z — Z and
1y : Z' — Z'. Then since Homg (Z, Z) has only one element % o fZ, = 15
and similarly we have f ZZ, of ZZ " =1y Consequently, for any terminal object
fg, : Z — Z'is an isomorphism in €. The same is true for an initial and a
zero object of a category. For any objects X and Y in %, we have f(f( X —0
and g9 : 0 — Y obtaining ¢% o f;* : X — Y. This uniquely determined
morphism 05 := ¢ o f5¥ is said to be a zero morphism. But in Remark 1 we
have used the notion of a zero morphism to define the notion of a kernel.

A category <7 is said to be an abelian category if the following (Ab.1) through
(Ab.6) are satisfied.

(Ab.1) For any X and Yin <7, Hom,,(X,Y) is an object in Ab, i.e., an abelian
group with respect to a binary composition + x y on the set Hom (X, Y").
Namely, for objects X, X', Y, Y’ of &/ and morphisms given as

/

we have ko (f +g) =ko f+ koginHom,(X,Y’)and
(f+g)oh=foh+goh
in Hom (X", Y).
(Ab.2) A zero object0 exists in .«7. Then Hom (0, 0) is the trivial abelian group.

(Ab.3) For any objects X and Y in &/ the direct sum (coproduct) X & Y existsin
/. Thatis, X @Y is an object in .« which is representing the follow-
ing covariant functor from .« to Ab:

Hom/ (X, ) x Homy (Y, ) : & ~ Ab. (6.2)
Namely, for an object Z in <7, there is an isomorphism

X/G\B/YZ = Homy(X®Y,Z) =, Hom/ (X, Z) x Homy (Y, Z). (6.3)

(Ab.4) For a morphism f : X — Y in 7, the object ker f exists in <. We
have already mentioned the kernel of a morphism in Remark 1. Here is a
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definition of a kernel. The kernel ker f of a morphism f : X — Y is an
object which represents the following contravariant functor:

ker(Hom/ (-, X) — Hom/(-,Y)) : & ~~ Ab. (6.4)
Namely,

ker fZ := Hom,y (Z, ker f) = ker(Hom,,(Z, X) — Hom,,(Z,Y)).
(6.5)

(Ab.5) For a morphism f : X — Y, the object coker f exists in .27. Consider
the functor
ker(Hom,/(Y,-) — Hom (X, )) : & ~> Ab. (6.6)

Then (6.6) is represented by the object coker f:

coker fZ := Hom,y (coker f, Z) = ker(Hom,/ (Y, Z) — Hom/ (X, Z)).
6.7)

Remark 6. Before we mention the last condition for a category to be an abelian
category, let us recall a few universal mapping properties for the notions that
appeared in (Ab.3)—(Ab.5). The direct sum of X and Y is a pair of morphisms
t: X - X@Yandj: Y — X @Y satisfying the following universal
property. Namely, for each pair of morphisms ¢ : X — Zandj : Y — Z
there is a unique morphism o : X ©Y — Z making the diagram

Xt Xapy-lv

S

Z

commutative, i.e., (6.3) in (Ab.3). Another example may be an element of the
right hand-side of (6.5). That s, if g : Z — X satisfies f o g = 0, then there is
aunique h : Z — ker f satisfying g = 70 h where i : ker f — X asin Remark
1. Namely, (6.3), (6.5) and (6.7) are exactly the universal mapping properties
of the direct sum, the kernel and cokernel, respectively.

Now we return to the last condition (Ab.6). First notice that ker f — X is a
monomorphism. This is because: if ¢, 1 : K — ker f satisfy i 0 ¢ = i o0
from K to X then composing with f : X — Y we get foiop = foiorhp =0
from K to Y. By the universal property of ker f — X or by (6.5), there
is a unique ¢ : K — ker f satisfyingior = io¢p =109 : K — X
concluding that « = ¢ = . Consequently i : ker f — X is a monomorphism.
By (Ab.5) cokeri exists in @/, Define the coimage of f : X — Y as the
cokernel of ¢ : ker f — X, i.e., coim f := cokeri. Next, let Z = coker f



16 Category

in (6.7). Then leoker f € Hom,y(coker f,coker f) determines the element
7 € Hom,, (Y, coker f) satisfying w o f = 0. We define im f := ker 7. The
universal property for ker 7 or (6.5) implies that there is a unique morphism
g : X — kerm = im f making the following diagram commutative.

i f

ker f X - Y "> coker f
i S T
i N ¥
A
coker i — b ker 7 (6.8)
coim f im f

Furthermore, by the universality for cokeri, g o ¢ = 0 implies that there is
a unique morphism A : cokeri — kerm = im f making the above diagram
commutative. Define coim f := coker i.

A category o satisfying (Ab.1)-(Ab.5) is said to be an abelian category if
the factorization morphism

(Ab.6) h : coim f — im f is an isomorphism. Note thatsuchan h is uniquely
determined. This is because for another A’ : coim f — im f, the equality
i'ohont’ = i'oh/onr’ = fimplies hor’ = h'o7’ since i’ is amonomorph-
ism Then, since 7’ is an epimorphism, we get h = h’.

Note 6. When <7 is an abelian category, the opposite category as defined in 1.2,
<7/° is also abelian. This is because the dual statement of (Ab.2) is the same
as (Ab.2), the dual object of the direct sum, which is called the direct product,
is isomorphic to the direct sum, and (Ab.4)—(Ab.6) are dual to each other. We
introduced the category €’¢ in (2.5) whose objects are functors from % to
%' and morphisms are natural transformations of functors. If ” is an abelian
category and if ¢ is a small category (i.e., if Ob(%) is a set), then € inherits
the property of being abelian from ¢”. For an abelian category 7, the category
Co(«7) of cochain complexes becomes an abelian category. A definition of the
category Co(.«7) will be given in Chapter II.

1.6.1 Embeddings of Abelian Categories

First recall from (4.1) that for a functor ' : € ~~ ¢’ we have the map
F : Homg (X,Y) — Homg: (FX, FY). (6.9)
If ¢ and ¢ are abelian categories, for f,g € Homg(X,Y'), we have that
f+g € Homy(X,Y)and Ff+ Fg € Homy (FX,FY). Then F : € ~ ¢’
is said to be an additive functor if F' is a group homomorphism. Namely, in
Homy/ (FX,FY) B B B
F(f+g)=Ff+Fg, (6.10)
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ie.,in ¢’ wehave F(f+g)=Ff+ Fg.

The Embedding Theorem now states the following: there is a functor
from a small abelian category &7 to the category Ab of abelian groups. Then
": @ ~» Ab is an additive functor and for an exact sequence

/

Xi—1 Xi Xiv1

in </ the sequence

/ / /
Xi—l Xz‘ Xi+1

is exactin Ab. See Lubkin, S., Imbedding of Abelian Categories, Trans. Amer.
Math. Soc. 97 (1960), pp. 410-417, for a proof. Consequently, this embedding
theorem implies

(i) for an object X in < its image X’ is an abelian group,
(i) the image Y of a subobject Y of X is a subgroup of X’,
(iii) for a morphism X EN Z in o/ the ker f, coker f, im f and coim fare
identified with ker f/, coker f', im f’ and coim f’ of X' 1 Z" in Ab.

Moreover, the identification of .7 with the subcategory <7’ = (<), diagram
chasing in terms of elements may be carried outin Ab for a diagram in an abelian
category. Recall that we have the Yoneda embedding ~: & ~~ & = Set””
defined by X — Hom, (-, X) = X € Ob(&/). A category is said to be
additive if (Ab.1)—(Ab.3) are satisfied. For an additive category ./ and an
additive functor F' : o7 ~~ Ab, Yoneda’s lemma states that

Hom (X, F) = FX (6.11)
is a group isomorphism. Let us revisit (Ab.4). First, recall that
Tl s =Set””
is a covariant functor. For X EN Y in &/ we have
X = Homy (-, X) L ¥ = Hom, (-, V)

in Ab“° = </ . Since 47 is abelian for an abelian category < the kernel of f
exists in «7. Namely, (6.5) may be read as

ker f = ker f (6.12)
ino/ =Ab”".
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Remark 7. Let </ be an abelian category and let

di, i di
X S x —T X S 6.13)

be a sequence of objects and morphisms in 7. Then (6.13) is said to be an exact
sequence if ker d; = imd;_;. If one prefers to regard (6.13) as a sequence in
Ab, the equality ker d; = im d;_1 is set-theoretic. Moreover

0—>x > x4 x1——0

is exact in .7 if and only if d’ is a monomorphism, d is an epimorphism and
kerd = im d'. Then

0—=x' Lo x 1o x>0

is said to be a short exact sequence. Let F' : of ~~ 98 be a covariant (or
contravariant) functor of abelian categories. For an exact sequence

0 kerfinY

if
; F
00— Fkerf I FX ! FY
isexactin 4, i.e., F'ker f = ker F'f, F'is said to be a kernel preserving functor.
Notice that F' is kernel preserving if and only if F'is a left exact functor in the
following sense: for every short exact sequence

0—x' L= x Lo x>0

in o,
0 rx' P px P pxen

is exact in 4.
Remark 8. In (6.12) the equality ker f = ker f in o implies that = : &7 ~~ o
is a kernel preserving functor. Namely for

f

0—=kerf——>X—>V
in &/ we have )
0 ker f —— X Y-
That is, the Yoneda embedding ~ : &7 ~~ o/ is a left exact covariant functor

which takes an object X € Ob(<7) to a left exact contravariant (or, covariant)

functor X = Hom,, (-, X) (or, X = Hom,, (X, -)) from the abelian category
7 to Ab.
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1.7  Adjoint Functors

Let FF: € ~ €' and G : ¢’ ~ € be functors. Consider the following
diagrams:

& F

Cg/

\\ % (7.1)
Set

and

4 M’\."\,’gf\/\/\,’\, Cg/

;\ / (7.2)
Set

Let Y be an arbitrary object of 4”. Then by the functor ~: ¢’ ~ €' =
Set?, Y is an object of ¢, i.e., Y is a functor from ¢’ to Set defined by
Y = Homey» (-, Y). (If the reader chooses to review some material for this
discussion we suggest Section 1.5 to Remark 5.) Then the composition Y Fis
an object of € = Set . If there exists an object X’ in € representing

YF : € ~ Set, (7.3)
we get an isomorphism (called a natural equivalence)
X ZvYr (7.4)

making (7.1) commutative. Moreover, if this representing object X’ happens
to be the image of Y under the functor G from ¢” to %, i.e.,

GY = VvF (7.5)

in ¢ = Set?, then G is said to be the (right) adjoint to F' and F' is said to be
the (left) adjoint to GG. Let us rewrite (7.5) as

Homg (-, GY) = Homg: (F -, Y) (7.6)
iné. Namely, for every object X of ¢ and for every object Y of 4"
Homy (X, GY) 2 Homy (FX,Y) (7.7)

in Set.



20 Category

Remark 9. Let ' : € ~» %' be adjoint to G : ¢’ ~» €. Then from the
commutative diagram as in (7.1) we have

F

€ ¢,

Gﬂ;\\\\ /? (7.8)
Set

ie,GY ~YFin?%. LetY = FX in (7.8). We get GEX ~ FXF. This is
nothing but the substitution Y = F'X in (7.7), obtaining

Homy (X, GFX) ~ Homy (FX, FX).

The identity 17y determines a morphism from X to GFX in 4. Namely,
1p € Ob(%"?) determines the natural transformation o : 14 — GF in €.
Similarly, evaluate GY ~YFatX = GY, i.e., substituting X = GY in
(7.7), to obtain Hom¢ (GY, GY') &~ Homy/ (FGY,Y). Then 15y determines
By : FGY — Y in ¢’ inducing 8 : FG — 14.

Moreover, for Y L. V" in €' we have the following diagram in €:
GY —=YF
lch l iF (7.9)
GY'—>Y'F
And for X & X’ in €, we have the diagram in Set
GYX —>YFX -
v f/FgT (7.10)
GY'X' —>Y'FX'
Diagrams (7.9) and (7.10) may be combined in Set as

~
~

GY X' YFX'
- Gfvr -
%Yg Ix YFg
GY X = YFX FFxr
) 7.11
l Py (7.11)
Gix GY'X' = Y'FX'
;4’9 N A
GY'X = Y'FX
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Remark 10. We can also express an adjoint pair
F
C T E
G

as follows. Let 14 : € ~» € and 14 : € ~~ € be identity functors of 4 and
%", respectively. The functor G : ¢’ ~~ ¢ is said to be the (right) adjoint to the
functor F' : € ~» ¢’ when the following diagram of categories and functors
commute.

¢ x ¢’
G e
\‘\‘x
& %@ & x €' (7.12)
Homh Homegr (+,)
Set

Actually, as noted in (7.7), there is a natural equivalence from the composition of
Home (-, - ) and 14 X G to the composition of Home~ (-, - ) and F' X 14 in (7.12).
Note that ¢ x ¢ is the product category of 4’ and ¢’ whose objects are ordered
pairs (A, A’) with A € Ob(%) and A’ € Ob(%¢’). The set of morphisms
Homy w7 ((A, A/), (B, B/)) is the product set Homy (A, B) x Homg (A/, B/).
The functor Homg (-, - ) is called a bifunctor from € x € to Set defined by

(A, B) € Ob(% x €) — Homy (A, B) € Ob(Set).

1.8 Limits

Let 4 be ¢’ be categories and let F' be a (covariant) functor from %" to
€. Then we will define the category Fnt" of (left) fans with fixed objects with
respect to F. An object of Fn’" is (Y, ik, i), where Y is an object of ¢ and
i, j are objects in 4" making the triangle

Y Fo! (8.1)
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commutative, for qbé- i — jin ¢’. A morphism from (Y,i}%, Fi);cq to
(Y',i¥, Fi)icq is defined as by, : Y — Y’ making

i,
Y Fi
Y i};/ i
hY, Fo! (8.2)
iy
) .
Y iy 1

. . Y_Y/ Y Y_ .Y/ Y ". . .
commutative, i.e., ip = ip ohy, and jp = jp ohy, for¢j : i — j. Aterminal

object of Fn!" is said to be an inverse limit (or projective limit or simply limit)
of F written as lim;cg Fi, or lim F;. Namely, lim F; € Ob(Fnt):

F;
o
lim £ Fo) (8.3)
Fj

commutes and for any object (Y, i?, Fi)inIn’, there exists aunique morphism
RY 1Y — lim F; making

Y F;
iF
RY F} (8.4)
. Jir
JF

commutative.
There is another way to express (8.1) through (8.4) in terms of the notion of
arepresentable functor. First, we will define a functor ¢ : € ~~ € as follows.

LetY L V' bea morphism of objects Y and Y’ in ¢. Then (Y Yy are
in %", Fori € Ob(%") define (1Y)(i) L5 (¥ (i)as Y L ¥ in &, ie.,
(LY)(i) =Y and (.f)(i) = f forevery i € Ob(¢”). Let F : €' ~» € be a
functor as before. We can consider the set Hom, - (¢Y, ) € Ob(Set). That

is,
Hom « (v+, F) : € ~ Set (8.5)
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is a contravariant functor. Then a representing object for this functor (8.5) is an
inverse limit for . Namely, there is an object lim F; in ¢ such that as objects
in ¢ = Set”

e~

lim F; = Homy (¢ -, F) (8.6)
is an isomorphism (a natural equivalence). As objects in Set
Homg (Y, lim F;) = Homg (1Y, F) (8.7)

is an isomorphism for every objects Y of €.
Incidentally, the functor Hom (¢ -, F) in (8.5) may be interpreted as the

composition of functors, i.e., Hom (¢, ') = F o as in Section 1.7 (7.8).
See the diagram

L

Cg (g(g/
;
E Sﬁ:Hom%%/(-,F) (8.8)
oL §
Set

Then an inverse limit lim Fj is an object of 4 which represents the composition
Fou= Hom. (¢ -, F) of « followed by Fin (8.8).

Note7. Letus observe that (8.7) implies (8.3) and (8.4). In(8.7)letY = lim Fj,
ie.,

Home (lim £, lim ;) = Homg e (lim Fy, F).
For an identity morphism 1y, ; on the left hand-side, there is
a € Homy (¢ lim F;, F).

For this natural transformation « : ¢ lim F; — F, compute at ¢ AEN jin ¢’ as
follows

(tlim Fy)ic=lim F; o pj — [,

Liim Fil lwgﬁ (8.9)
(tlim Fy)j :=lim F; _ %7 Fj=F;
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o ¢Z
which is (8.3). Next let —? : 1Y — F be a morphism in €. Fori —> i
compute z? and j% as

Y
WY)i=Y L ~Fi=F
].yl qus; (8.10)
Y
Y)j=Y E~Fj=F

For this element —}. € Hom,. (Y, F') on the right hand-side of (8.7) there
exists a unique element 2¥ € Home (Y, lim F}). Then (8.9) and (8.10) give

(8.4).

1.9 Dual Notion of Inverse Limit

Let F' : €' ~~ € beafunctor. Consider the following diagram corresponding
to (8.8):

L

¢ %%”’
.
Hom,_, s (F,¢") SF::HOIH%”%”’ (£) 9.1)
(g b
v
Set

Then a representing object in ¢ for the composed covariant functor
Fou= Hom, .« (F,¢-)
from %€ to Set is the direct limit (or colimit) th F; of F. Namely, we have the
isomorphism of %€ = Set®
lim F; = Hom,er(F, 1), 9.2)
As objects of Set, for every Y € Ob(%), we have
lim 7Y = Homy (lim F;,Y') = Homer (F,.Y). 9.3)

That is, for ¢§- : 1 — j in €’ we have the commutative diagram

o, lim £ 9.4)
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and in the category Inp of (right) fans with fixed objects with respect to F', the
object of (9.4) is an initial object. Namely, if

Fgi Y 9.5)

is an object of Fnp (i.e., an element of Hom,, - (F, 1Y), the right hand-side
of (9.3)), then there is a unique morphism hy from lim F; to Y making the

diagram
JF
Pt hy (9.6)
iy
Fj — Y
Jy
commutative.

Note 8. For a functor F' : 6’ ~ €, the definition of an inverse limit becomes
the direct product [[,c, F; if €' is a discrete category (that is, if 4" has no
morphisms except identities). Similarly, a direct sum @), F; is a direct limit
of F from a discrete category ¢ to €.

1.10  Presheaves

In Subsection 1.2.1 we defined a presheaf F' as a contravariant functor from
the category .7 associated with a topological space 7 to the category Set or the
category Ab. We will find it convenient to define the notion of a presheaf as an
object of € = Set”" for any category . For example, for an object X of € the
functor X = Homg (-, X) is a presheaf over €. In this section we will consider
mostly the case ¢ = 7 with valuesin Set or Ab. Let F € .7 = Set” " and let
¢ : U — V be an inclusion morphism. Then the induced map F'i : F'V — FU
is said to be the restriction map in Set. We often write F'V as F'(V'). Let U and
V be objects in .7 (i.e., U and V are open sets in the topology for 7°). Then
i:UNV —Uandj:UNV < V are morphisms in .7. The restriction
maps F(U) o, FUNV)and F(V) 4, F(U N V) are induced. We will
give the definition of a presheaf explicitly as follows.
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Definition 4. A functor F' : .7 ~ Set is a presheaf if (PreSh1)—(PreSh2’) are
satisfied:

(PreSh1) For an open set U, F'(U) is a set where an element of F'(U)is saidto
be a section of F over U.

(PreSh2) For U C V there is the induced map p}; : F(V)— F(U) called
the restriction map. The following axioms must be satisfied:

(PreSh1’) For U € Ob(.7), pf; is the identity map 1) : F(U) — F(U).
(PreSh2’) For open sets W C U C V the diagram

commutes, i.e., p; o pl; = plyr-

Note 9. Notice that all the conditions (PreSh1)—(PreSh2’) mean precisely that
F € Ob(2).

Consider open sets U, U’,U”, ... containing a point x in the topological
space T'. Define an equivalence relation ~ between s € F'(U) and s’ € F(U’)
as follows: s ~ s’ if and only if there is an open set V with V' C U N U’ so that
pY(s) = p¥'(s'). The equivalence class s, said to be the germ of s € F(U)
(or s’ € F(U')) at z. The set F,; of all the germs at x is said to be the stalk of
F at z. That is, for all open sets containing x, the direct limit

F, = lim F(U) (10.1)
zelU

is the stalk of F' at x.

~

Definition 5. A presheaf F' € Ob(.7) is said to be a sheaf when the following
condition (Sheaf) is satisfied:

(Sheaf) Let U be an open set in 7. For any open covering {U; };c; of U (i.e.,
each U; is an open set and U = | J;; U;) and for any sections {s; €

F(Ui)}ier satisfying
Ui, (50) = prin, (s5),  for i, j el (10.2)
there exists a unique s € F'(U) such that

i, (s) = si, foralli € I. (10.3)
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See the diagram below for (10.2) and (10.3).

/\

F(U;NU;j)

U;) (10.4)

Note 10. A presheaf
O(U) = {holomorphic functions over U C C"}

is a sheaf. For a non-example consider y = 1/x, where z is a real number
satisfying 0 < x < oo. Then

B(U) = {locally bounded continuous functions on U C (0,00)}

is a presheaf but not a sheaf.

Remarks 1. (1) For the category T of presheaves we let 7 be the category of
sheaves over .7 (or over the topological space 7).

(2) In Ab the following

o 8
[B/
is said to be exact if « is bijective onto the subset B’ of B where

B'={be B|p(b) =)}

Then for b € B’ there is a unique element a € A such that a(a) = b.
Consequently (5 o a)(a) = (8" o a)(a). Namely A % B is the kernel of
B — ' (categorically speaking, « is an equalizer for 3 and (). Then the
sheaf axiom (Sheaf) may be summarized as the exact sequence

PU nu;
Py L ], F(U ) =1Ly FUNU). (103
pU nu;

1.11  Notion of Site

The definitions of a presheaf and a sheaf have nothing to do with the elements
in open sets in the category .7 induced from a topological space T. We will
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give much more general concepts of a sheaf and a presheaf over a category
which will be called a site. .

Let ¢ be a category and let € = Ab®" where as before Ab is the category
of abelian groups. As already mentioned in Section 1.10 an object of € is a
presheaf with values in Ab. Let U € Ob(%’) and consider a collection Cov (U )
of families of morphisms in ¢". Each family of morphisms for an object U in

¢
(U; 15 Uier € Cov(U)

is said to be a covering family of U when the following conditions are satisfied:

(Sitel) An isomorphism U’ = U is a covering family of U, i.e., the family of
one morphism {U’ = U} € Cov(U).

(Site2) Let {U; LN Utier € Cov(U). Then for V' — U we have
Al x V—=V}eCov(V),
i.e., stable under a pullback. See the diagram below.

U;

U
T T (11.1)
1%

Ui XUV4>

A 7!
(Site3) Let {U; ELN U} € Cov(U) and {U;; =5 U;} € Cov(U;). Thenthe family

fiof;
of morphisms obtained by the compositions {U;; —= U} belongs

to Cov(U).
Then (%, Cov(%)), where Cov(%) = {Cov(U) | U € Ob(%)} is said to
be a site. A morphism h of sites is a functor from ¢ to ¢’ satisfying: for
(U; 15 U} € Cov(U), wehave {hU; 25 U} € Cov(hU) (where Cov(hU)
is an element of Cov(%”)) and for V' — U, h(U; xy V') — hU; Xpy hV is an
isomorphism.

1.12  Sheaves over Site

A presheaf F' € Ob(%) = Ob(Ab?") is said to be a sheaf over (%, Cov (%))
if the diagram

FU) ——=11FU:) —= 11 F (Ui xv Uj)

corresponding to (10.5) is exact. This full subcategory % of sheaves of € is said
to be a ropos over the site (%', Cov(%’)). A morphism of sheaves is a morphism
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of presheaves. The above exact diagram may be written as
Hom (U F) — [ Hom, (U;, F) —= [THom(U; xu UJ,F) (12.1)

by Yoneda’s Lemma. See the following diagrams below which correspond to
(10.4).

(12.2a)

S
S

S; Sj
UiXUUj

such that if s; o p; = s 0 pp = dls € Hom (U, ) satisfying s; = s o f; for
1€ 1,

U;) (12.2b)

F(U)
Ff; Efj
Ui)/ \F
\ /

F(UZ XU

=

)

1.13  Sieve; another notion for a site

Let ¢’ be a category, let € = Set”" be the category of presheaves and
let ™ : € ~~» % be the Yoneda embedding. Let U € Ob(%). Then we are
interested in a subobject of U = Homg (-, U). Note that a subobJect of a
category is an equlvalence class. (See Remark 1.) Leti : W — U be a
subobject of U in € where W € Ob(‘g) need not be representable, ie, W
may not be replaced by W for some W € Ob(%). Such a subobject W is said
to be a sieve of U € Ob(%€). For V € Ob(€) we have UV = Homy(V, U)
and for a monomorphism representlng the subobject 7 : W < U, we have the

set-theoretic inclusion iy : WV < UV. Namely, to give a sieve W of U
is to determine a subset WV of Home (V.U ) for every V € Ob(%). By the

Yoneda Lemma we have WV = Hom, - (V W). The following is the Yoneda
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world diagram, identifying an object of 6" with the represented object of %

A 7

Ww—=U

13.1
:N¢ (13.1)

14 in ¢
where i o ¢/ = iy(¢') = ¢. A pair (¢,d(%)) is said to be a site, where
(€)= {J(U) | U € Ob(%)} if each set J(U) of sieves for U satisfies the

following conditions.

(Site1’) An identity morphism 1;7 : U < U in % is an element of J(U).

(Site2’) Let W € J(U). Then for V % Uin €, W xy V. —V in € belongs to
the set J(V) of sieves for V.

We—"t——U
¢ (13.2)

Wxy Ve——=V

(Site3’) Suppose Wed (U)and let W' UbeasieveforUin% . For an arbitrary

V € Ob(¥%) and for every V YW in %, when the pullback of T’
under ¢ =io¢’,ie, W xy V. — V is an element of J(V), then
W' < U also belongs to J(U).

g—iod’ (13.3)
W xyV Vv

Remark 11. Those sieves belonging to J(U) are said to be covering sieves for
U € Ob(%). Consider the case as in (13.1), a morphism ¢ : V. — U is
factorable through a sieve W, i.e., ¢ = i o ¢/. Consider the following pullback
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diagram and an arbitrary morphism 1) : X — V:

W U
¢ p=iog’
W xy V = 1% (13.4)
¥
X

Then 1) can be factored as ) = ps o (¢’ o 1), 1)) where po is the projection
onto the second factor. Namely, VX C (W xy V)X holds. Consequently
w XU V=V.

Remark 12. Let W and W be sieves of U and V[/ be a subobject of W’ which
is represented by a monomorphism ¢ : W' — W', If W is a covering sieve,
ie., W € J(U), then so is W’. A proof follows from the diagram:

(13.5)
W’ XU |4

/ \V

That is, for an arbitrary morphism ¢V — W, the composition ¢ o ¢’ is
a morphism from V' to W’. Then from Remark 11 we have the pullbacks
WxgV=VadW xyV = V. In particular, W xy V=V vy
belongs to J(V') by (Sitel’). By (Site3’), i/ : W’ < U is a covering sieve, i.e.,
W’ e 3(U).

WXUV
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For covering sieves W and W’ in d(U), the pullback W xy W'isa covering
sieve. This follows from the following two-level pullback diagram:

WXUW/ W/\

W 1 U

(W XUW/) XUV W’XUV

\ \\ (13.6)

W xyV 1%

1/’//

¢N

X

Namely, for ¢’ : V — W as in Remark 11, a morphism from X to W xy Vis

induced. Then for each morphism ¢" from X to W xy V (and with X LN
W xy V) there exists a unique morphism from X to (W XU w’ ) xu V giving
commutativity. That is, each ¢/ can be factored through (W xy W) xp V.
Consequently, (W xy W’ ) xpV = W’ x V holds as in Remark 11. Since
W' e J(U), W’ xy V is a covering sieve of V. Therefore, (W xy W) x¢; V
is a covering sieve of V. By (Site3), W xy W' < U is covering sieve of U.
Note 11. Let (¢',Cov(%)) and (¢,” Cov(%)) be sites. Then’ Cov (%) is said
to be finer than Cov (%) if for each object U of €, Cov(U) C ' Cov(U) holds.

Remark 13. Recall from Remark 1 that V' % U is said to be an epimorphism
when the contravariant functor Homg (-, W) always induces an injective map
Homy (U, W) — Home (V, W) in the category Set, ie., fo¢ = go ¢ in

Home (V, W) implies f = ¢. A family of morphisms {U; 25 U'lcr is said
to be an effective epimorphism if for each object W € Ob(%’) the presheaf
W = Homg (-, W) satisfies the sheaf axiom for this family:

WU > HZGIWUZHH’L,]GIW(Ul XU U])
is exact in the sense of Remarks 1. Furthermore, a family of morphisms

{U U}ZEI
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is said to be universal effective epimorphism if for an arbitrary morphism V' —
U the family of pullback morphisms {U; Xy V' — V };¢1 is also an effective
epimorphism. For a category ¢ define

Cov(U) = {families of morphisms {U; — U} of €

which are universal effective epimorphisms}.

Then every presheaf W= Homy (-, W) € % becomes a sheaf with respect to

Cov(%) = {Cov(U) | U € Ob(%)).

Note that (4", Cov(%’)) becomes a site in the sense of Section 1.11, i.e., Cov(U)
satisfies (Site.1)—(Site.3). Then (¢, Cov(%)) is said to be a canonical site.

1.14  Sheaves of Abelian Groups

We have considered the category %€ = Set®’. In this section we will treat

the case .7 = Ab”" where Ab is the category of abelian groups and 7 is
the category associated to a topological space 7. See Section 1.10 through
Definition 5 and Examples 1.

An object F' € Ob(.7) is a contravariant functor from .7 to Ab. Therefore,
for an object U (i.e., an open set) of .7, F(U) is an abelian group and for
a morphism F' % G in 7, F(U) du, G(U) is a group homomorphism
¢y of abelian groups. Namely, a natural transformation ¢ (which will be

called a morphism of presheaves) of presheaves [’ and GG induces the group
homomorphism ¢ over U from F(U) to G(U). Then define

(ker §)(U) = ker gy = {av € F(U) | dulav) = Ogan},  (141)

where O is a zero element of the abelian group G(U). For ¢ : U < V' in
7 we have

(ker ¢)(U) = ker ¢y C F(U) —2Y> G(U)
‘I\ FL:pg GL:’pg (14.2)
|

(ker ¢)(V) ker by C F(V) -2 G(V)

To show that ker ¢ is a presheaf (a contravariant functor) we need the homo-
morphism (ker ¢)¢ : (ker ¢)(V') — (ker ¢)(U) in (14.2). Let

ay € ker ¢y C F(V)
Then p};(ay) € F(U). Compute ¢/ (py;(ay)) by the commutativity of (14.2):

)
ou(py(av)) ="pl (dv(av)) ="pt 0ce) = Ogw).- (14.3)
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Namely, pY;(ay) € ker ¢y = (ker ¢)(U). Define

((ker ¢)o)(ay) := p¥(ay) € (ker ¢)(U). (14.4)
Consequently for ¢ : U < V' in .7 we have in Ab

(ker 6)(V) SO (ker )(U)

ay +—— pg(av). (145)

This assignment on an object and a morphism satisfies the presheaf axioms

(PreSh1)—(PreSh2’) in Definition 4, i.e., ker ¢ € Ab7 " = 7.
When F' and G are sheaves, we will show that the presheaf ker ¢» becomes a
sheaf. Let ' 2, G be amorphism of sheaves. Foranopenset U letU = U;c1U;
be an arbitrary covering of U where U,U; € Ob(.7). For s; € (ker ¢)(U;),
. , U; .
i € I, assume pgszj (si) = PUAU, (sj). Since s;,s; belong to F'(U;) and
F(Uj;) respectively, there exists a unique s € F'(U) satisfying pgi(s) = s; for
all ¢ € I. We need to show that this s belongs to (ker ¢)(U). Consider the
following commutative diagram:

(ker ¢)(U) —— ker ¢y C F(U) —Y~ G(U)
i | (14.6)
ou,
F(U;) — = G(U;)
For s € F(U) in (14.6) we have ¢U¢(Pg( )) = ¢y, (s ) = Og( v;)- In the
the other direction in (14.6) we must have 'p ( u(s)) = by the com-
mutativity. For Og) € G(U) we also have ( aw) ) . By the
uniqueness in Definition 5 we have that ¢y (s) = Og( ) 1€,

s € ker gy = (ker ¢)(U).

Consequently, the presheaf ker ¢ is a sheaf.
Let F 2 Gbea morphism of presheaves. Then as before, for U € Ob(.7)

we have the group homomorphism F'(U) — RNye! (U) in Ab. Define

(im ¢)(U) := im ¢y = {¢v(sv) € GU) | sy € F(U)}. (14.7)

Then im ¢ : .7° ~~ Ab is a presheaf. Even if ' and G are sheaves, im ¢ need
not be a sheaf. In the following we will show why im ¢ is not in general a
sheaf. As before let U = U;c;U; be an open covering of U. Suppose that for

s € (im¢)(U;) = imoy,, i € 1, /pgszj(sg) = ngmUj(Sg‘) holds. Consider
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the following commutative diagram:

FU) ., FW)
du, F(U; NU;) ou,
im gy, im g,
$usn0,; (14.8)

G(U; N U;)

By regarding s; € (im ¢)(U;) and s; € (im ¢)(U;) as the sections of the sheaf
G over U; and U; we find aunique s € G(U) satisfying’ p(U]i (') = s, € im ¢y,
foralli € I. The sheaf condition on im ¢ is to claim s’ € (im ¢)(U) = im ¢y.
Namely, in order for im ¢ to be a sheaf, ¢y : F(U) — G(U) needs to be
epimorphic for all U. As we will show in Chapter III, even if ¢ : F' — G is an
epimorphism of sheaves, the induced homomorphism ¢ : F(U) — G(U) of
abelian groups need not be an epimorphism in Ab.

We define the presheaf coker ¢ of a morphism of presheaves ¢ : ' — G by

(coker @) (U) := coker oy = G(U)/im ¢y. (14.9)

Even when ¢ : F' — (G is a morphism of sheaves, coker ¢ need not be a sheaf.
We will demonstrate this situation as follows. As before we let U = U;crU;.
Suppose that the class 57, € coker ¢y, of s, € G(U;) is Oy,. Namely,

Then we have s'Ul_ € im ¢y, . Suppose that the induced homomorphisms of the
restriction maps satisfy

- U
’Pgimuj (0v:) ="pgnu, (Ou;) (14.10)
in coker ¢p,ny; = G(U; NUj)/im ¢y,ny;. Namely, each sy, € im ¢y, satis-

fies’ pgijj (sp,) =" pgijj (5’Uj> as in the above paragraph. Since im ¢ need
not be a sheaf, coker ¢ also need not be a sheaf.
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1.15  The Sheafification Functor

_For the inclusion functor from the category T of sheaves to the category
T =Ab”" ie,
L T~ T (15.1)
we will construct a functor

sh: T ~ T (15.2)

so that the inclusion functor + may be the (right) adjoint to the functor sh as in
Section 1.7. That is, in the diagram

sh

g T

\\ / (15.3)
G\ G=Hom (-, G)
Ab

we have in 7 = Abﬁo
1G ~ G o sh, (15.4)

where (15.4) means that for any presheaf I
1G(F) = Hom 4 (F,1G) ~ (G osh)(F) = Hom 5(shF,G).  (15.5)

Compare (15.4) with (7.5) and (15.3) with (7.8).

Let F be a presheaf, and let U be an open set. Then define (shF)(U) as the
set of all mappings s from U to the direct product [ [, .;; F; of stalks satisfying
s(z) € F, and the following gluing condition (Glue) for condition (Sheaf) in
Definition 5.

(Glue) For x € U, there is an open set W contained in U and there exists a
section t € F(W) so that for every point 2’ € W, s(z’) is the germ of
tata’,ie., we have t,y = s(2’) € F.

We will show that shF" is indeed a sheaf. Let U = U;¢;U; be any covering of
U. For s; € shF(U;), ¢ € I, suppose ﬁgﬁmUj (s;) = pgszj (s) holds where p
is induced by p{ = shF(.) : shF(U) — shF (V) for v : V < U. Then by
(Glue) there exist W C U; N Uj and t € F(W) satisfying

Pys(s0) (@) = tor = pyit(s7) (')

for all 2/ € W. This ¢ can be used to glue s; € shF(U;) and s; € shF(Uj) to
get s;u; € shF'(U; U Uj). Consequently, we obtain an s € shF'(U) to satisfy

ﬁgl (8) = Si'
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1.15.1  Universality for shF’

The isomorphism in (15.5), i.e., Hom ;(F, &) ~ Hom 5 (shF, G), implies
that for ¢ € Hom ;(F, () there exists a unique morphism ¢ : shF" — G of
sheaves. Namely, in the category T of presheaves we have

shF

e (15.6)
6 e

G

where the morphism 6 (which is a natural transformation of objects in T) is
defined as follows. For an open set U, we have 6§y : F/(U) — shE'(U) in Ab
defined by

Ou(s):U— [[ Fo. seF(U)
zelU

T Sy

Such an object sh F' satisfying the above universal mapping property, which is
uniquely determined, can be used as a definition of a sheafification of a presheaf.
That is, the sheafification shF' of a presheaf F' is a sheaf shF’ satisfying (15.5)
for any sheaf G i.e., (15.6).

Remark 14. The inclusion functor ¢ which regards a sheaf just as a presheaf is
a left exact functor from .7 to .7 in the following sense. For an exact sequence

0 F’¢FwF” 0

as sheaves, we have only the following exactness

0 ) Ay R 7

as presheaves. This means that for an open set U the sequence of presheaves

duU

0— F'(U) 22> F(U) 2% F/(U)

is exact in Ab. This topic will be treated in Chapter III.
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DERIVED FUNCTORS

2.1 Complexes

Let </ be an abelian category. We will define the category Co(</) of
(cochain) complexes as follows. An object in Co(%) is a sequence of objects
and morphisms

A1 g Y g (1.1)
such that A7 € Ob(«7) and &’ € Hom,, (A7, A7*1) satisfying d/ o d/=1 = 0
for all j € Z, the set of integers. We often write the object in (1.1) as A®. A
morphism between objects A® and B*® in Co(/) is defined as a collection of
morphisms f7 : A7 — B7 in ¢f for j € Z so that in

Aj—l dqi—-1 Aj 47 Aj-‘rl Qi+t -
ifj_l ifj ifm (1.2)
Bj_l /dj—l B] /dj B]_l’_l /d]+1

we have that f7 o d7=! ='d7=1 o 7! for all j € Z. We often write (1.2) as
fe: A — B°.

2.2  Cohomology
Let A* € Ob(Co(/)). Since d’ o d’~! = 0, imd’~! C kerd’ holds.
Therefore, we can consider the quotient object

kerd’ /imd/~t. 2.1)

39
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Since kerd? C A/, the object (2.1) is a subquotient object of A7. We define
the j-th cohomology H7 (A®) as

H/(A®) := ker dj/imdj_l.
Then for each j
H’ : Co(e) ~ of
A (2.2)
A* — H/ (*)

is a functor. Let f* : A®* — B* be a morphism in Co(#7). Then the induced
morphism H7(f®) : H/(A®) — H7(B®) in < is given as follows. For
T € H/(A%) =kerd’/imd’ ™,

where Z is the class of - € ker d7, we have that HY (f*)Z = fJ (), where f(x)
is the class of f7(x) in ker’d’ / im’d’~!. Notice that since the commutativity
of the diagram (1.2), i.e.,

‘A (f(2)) = A (2),

for z € kerd’, we have 'd’(f7(z)) = 0 in B/*!. See the following diagram
for the above computation.

i—1 X 7 . Jj+1
. d AJ d A]+1d4> .

T

H/(A®) =kerd’ /imd/~!

ker d7

canonical epimorphism

1I HI(f®) pit (2.3)
H/(B®) = ker'd’ /im'd/~*

canonical epimorphism

ker’d’

i / ) -

BI BIitl — ...

Namely, H? : Co(&/) ~~ 4 is a covariant functor which is said to be a coho-
mological functor.
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Notation 12. Let Co™ (%) be the category whose objects consist of complexes
bounded from below, i.e., A®* = (A7);>0:

40

0 0 A0 Al—Le AT e Ob(w),

is an object of Co™ (7).

2.3 Homotopy

Let A® and B* be objects in Co(.<7) and let f* and ¢g® be morphisms from A°®
to B*. The functor H’ induces the morphisms H(f*) and H7(¢g*) from H’(A®)
to H7(B*®) in 7. We ask when we get H7(f*) = H7(g*). Using the notation
in Section 2.2, for an arbitrary z € H7(A*®), the equality H’(f*) = H7(g®) can
be phrased as: for z € H/(A®) = kerd/ /im d/~!

W (f*)z = fi(x) = ¢/ (z) = W (¢")z 3.1
in H/(B*). Namely, (3.1) means that the cohomology classes of f7(x) and
¢’ () are the same, i.e., f/(x) — ¢/(z) € im’d’~!. Lets’ : A7 — B’ lbea

morphism in 7. Then’d’~! o s/ + s7+! 0 d7 is a morphism from A7 to B/,
J € Z. We then assert: if

fl—g ="'dos) + 7 od, (3.2)
then H/(f*) = H7(g®) holds. See the diagram below.

Ai-1 7! Ad & Ad+1 AR
fjlugjl/fjugi% ugjﬂ (3.3)
ijl /djfl B] /dj B + /dj+1 o

For x € ker d/, let us compute (3.2) as follows:

(f1 =g")(@) = f(2) =g’ (x) ="dT7 (s (@) + 87T (d (@) = "d 7 (7 ().
Since sj(:g) € Bj_ll we have f/(x) — ¢’(z) € im’d’~!. That is, (3.2),
implies H7(f*) = H/(g®). Morphisms f*,g® € Homcq(.)(A®, B®) are said
to be homotopic if we have H7(f*) = H/(g®) as morphisms from H’(A®) to
H’(B*®). When f* is homotopic to ¢°, we write f® ~ ¢°. Notice that ~ is an
equivalence relation in the set Homc, () (A®, B®). We define

K() := Co(o)/ ~ . (3.4)

That is, the objects of K(<7) are pre01sely the objects of Co(%7) and morphisms
are the homotopy equivalence classes of morphisms as we defined above. Then
the functor H? : Co(%/) ~~ & in Section 2.1 can be extended to

'"H : K() ~ o (3.5)
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defined by "H’ (f*) = H7(f*). We will use the same H/ for both functors from
Co(«/) and from K(&7) to 7.

2.4 Exactness

Let 7 and £ be abelian categories. Recall the following from Section 1.4:
a functor F' : o/ ~» 2 is said to be additive if the induced homomorphism F
by F'is a group homomorphism from Hom, (A, B) to Homg(F A, F'B) for
A, B € Ob(47). Our interest is to measure the loss of exactness as F’ takes an
object of .« into an object of 2. Namely, for an exact sequence

- , -
17 g i &

Al

in 7, we measure the loss of exactness of

Jj—1 . J
le FAI FdJ FAJ—’_I&)"’

= FA-

in 2 by calculating the cohomology H7 (F A®) = ker F'd? /im F'd’~!, a sub-
quotient object of F'A7. For a complex A* € Ob(Co(%7)) (since F is a functor)
we have 0 = F(d/ o d/~!) = Fd’ o Fd’~!. Thatis FA® is a complex, i.e.,
FA® € Ob(Co(#)). Next for any complex A® of objects and morphisms of
o/, we can decompose the complex A® as follows:

NN
\ \, O\ /

A1 (4.1)

/
/ XIZAN

where all the diagonal short sequences are exact. Therefore, it is sufficient to
consider the effect of F' on a short exact sequence

0— a2 og Yo gr

o

4.2)
in «7 to measure the loss of the exactness of

F F
0 FA ¢ FA v FA" 0 4.3)
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in A. A functor F' : &/ ~ 2 is said to be exact when (4.3) is exact in % at
FA', FA and FA”. Namely, F'¢ is a monomorphism, ker F¢p = im F'¢ and
F1p is an epimorphism in Z. When only

F P
0— A 2 a0 g

is exact, i.e., F'1) need not be an epimorphism, F'is said to be a left exact functor.
Similarly, when

F I
a0 pa N g 0

is exact in #, I is said to be a right exact functor. When only at F'A, the
exactness is preserved (i.e., if we only have im F'¢ = ker F'i) in (4.3)), F'is
said to be half-exact.

2.5 Injective Objects

[Injective Objects] Let <7 be an abelian category. Then for objects A and B
in o/, Hom (B, A) is an abelian group (i.e., condition (A.1) of Section 1.6).
Then the contravariant functor Hom, (-, A) is a left exact functor from <7 to
Ab. That is, for an arbitrary short exact sequence in .o

0 oot 0 (5.1)

we have the exact sequence in Ab

0 — Hom,,(C", A) . Hom,,/ (C, A) o Hom, (C',A), (5.2)

where, for instance, ¢* := Hom/ (¢, A). One may like to interpret the exact-
ness of (5.2) through the following commutative diagram:

A

{ T X (5.3)

0 C’ C c” 0.

An injective object I in <7 is an object to guarantee the exactness of the functor
Hom/ (-, I) : &/ ~» Ab. That is, in the diagram

/ A
j//f (5.4)
P :
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any morphism f’ : C' — I can be lifted to f : C' — [ satisfying f' = f o ¢.
Namely, the induced morphism ¢* in (5.2) from ¢ becomes an epimorphism:
also

Hom A (C, I) — > Hom,/(C", T) — 0
is exact. That is, an object I is said to be an injective object if

Hom/ (-, I) : &/ ~~ Ab

becomes an exact functor.

Dually, an object P is said to be a projective object of o7 if the covariant
functor Hom/(P,-) : o/ ~» Ab becomes exact. Namely, for a short exact
sequence in .7 as in (5.1) the induced sequence in Ab:

0 — Hom,, (P, C") > Hom,, (P, C) -** Hom,, (P,C") —0, (5.5)

is exact, where, for instance, ¢, := Hom (P, ¢).

Note 13. Let F' : € ~ €' be adjoint to G : ¢’ ~» €. Suppose that F takes
monomorphisms in 4" to monomorphisms in ¢” (e.g., F' is an exact functor).
Then G takes injective objects of 4" to injective objects of . We will prove
this assertion as follows. Let I’ be an injective object of ¢” and let

0 Cl ¢ C w C// 0

be an arbitrary short exact sequence in 4. By the assumption, we have the exact
sequence
Fé Fip
0 FC’ FC FC”
in ¢”. Since the contravariant functor Home~ (-, I') is an exact functor, we get
the exact sequence

Fa)* F¢)*
Home: (FC", T') 2% Home: (FC, 1) 2% Homy: (FC!, ') —— 0

in Ab. Consider,

Homy (FC",I') = Homy/ (FC’, I') = Homg: (FC', I') = 0

0 — Homy (C", GI") Y. Homy (C, GI") L Homy (C',GI') -0

where the vertical homomorphisms are isomorphisms (i.e., (7.7) in Chapter I).
Therefore, ¢* in the induced sequence in (5.6) becomes an epimorphism. In
general, since Homg (-, GI') is left exact, we conclude that Homy (-, GI') is
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an exact functor. Namely, G’ is an injective object of €’ for an injective object
I'in?’.

Note 14. An abelian category % is said to have enough injectives if for an
arbitrary object A of % there exists a monomorphism from A to an injective
object I of €. Namely A is a subobject of I. A category is said to have enough
projectives if an arbitrary A is a quotient object of a projective object P of
¢ . Namely, there exists an epimorphism from P to A. An injective object of
¢ is projective object in the dual category ¢°. Consequently, 4" has enough
injectives if and only if ”° has enough projectives. We can prove the following
assertion: as in Note 13, let F' : ¢ ~ ¢’ be adjoint to G : ¢’ ~~ € and assume
that ¢” has enough injectives. We have: if G takes injective objects of ¢” into
injective objects of € then F' takes monomorphisms in 4’ to monomorphisms in

%' LetC' % Chea monomorphism in 4. We shall prove that F'¢ : F'C' —

FC’ is a monomorphism in ¢”’. We have a monomorphism F'C’ 2 I'in
%", where I’ is an injective object of ¢”. Then GI’ is injective in €. Since

Homg (-, GI') is an exact functor. For 0 — C’ 2, ©, the induced

Homg (C, GI') —~ Home (C', GI') —— 0

is an epimorphism. Since F' and G are mutually adjoint, this epimorphism
induces the epimorphism

F *
Homg: (FC, I') "% Hom: (FC', I') — 0.

That is, in particular, for ¢’ € Home/ (FC’, I'), there is f € Homg: (FC,1")
satisfying (F'¢)* f = ¢/. Namely, f o F¢ = ¢’ in the following diagram

I/

/ A
%M
F

|
ro’ 2 po (5.7)

S

0
implying that F'¢ : FC' — FC is a monomorphism.
Remark 15. We summarize Note 13 and Note 14 as follows. For the adjoint

pair F' and GG, when %" has enough injectives, we have: F preserves monomor-
phisms if and only if G preserves injectives.

2.6  Resolutions

Let 7 be an abelian category and A® and B® be complexes, i.e., objects in
Co(«), and let f* be a morphism from A® to B®. As was shown in Section
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2.2 the morphism H7(f®) : H7(A®) — H/(B®) is induced. When H7(f*) is
an isomorphism, j € Z, f® : A®* — B® is said to be a quasi-isomorphism. For
a single object A € Ob(7), we regard A as

0 0 A 0 0 SR

i.e., an object of Co(«7). When a complex I*® consisting of injective objects
I’, 5 > 0, of & is quasi-isomorphic to the complex A, I* is said to be an
injective resolution of A. That is, the morphism (...,0,¢,0,...) of Co(«) in
the diagram

0 A 0 0 e
io Jf lo lo 6.1
0 IO d° Il dt I2 d e

induces isomorphisms H7 (A*) Z, HI(I*), j € Z. Namely, I® is exact at each
I7,ie., H/(I*) =0, j # 0 and for j = 0 the induced morphism

HY(A) = A S HY(I®) = ker d”

is an isomorphism. Consequently, we have the isomorphism A ~ ime =
ker d. We often write an injective resolution of A as
dl

€ d°

0 A (6.2)

10 It
Namely, one may say that * € Co(.«7) is an injective resolution of an object A
of .o/ when (6.2) is an exact sequence in %', and each [/ is an injective object.
Notice that every object has an injective resolution in a category with enough

injectives in the sense of Note 13.

2.7 Derived Functors

Let & be an abelian category and let F' be an additive left exact functor
from &7 to another abelian category Z. Assume that ./ has enough injectives.
For an injective resolution /® of an object A in &/, F'I°® is a complex, i.e.,
FI* € Co(#). We define the j-th right derived functor of F at A as

R/FA:=HW(FI*) =ker Fd’ /im Fd/ ™! (7.1)

where

0 1
FIe:... 0 FI0 rd FI! rd

Let I* and J* be two injective resolutions of an object A in «7. To justify
the notation R7 F'A in (7.1) of the right derived functor of F' at A, we will prove
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that H/(F'I*) and H? (FJ*®) are isomorphic for j > 0. Let us consider

0—A (7.2)

For the monomorphism €’ in (7.2), the injectiveness of I° implies that there exists
a morphism f© from J? to I°. Namely, we have the following commutative
diagrams

10 0—=A——]0

/A \|
|f0 , |g()

, | € N
OHA*6>JO JO

where the second diagram is obtained by the injectiveness of .J°. Then d° o f°
is a morphism from .J° to I'. From the diagram

104())[1

fOT dYo 0

740

Tf(%
! (7.3)

we get

In order to show the existence of a morphism f! : J' — I''in (7.3), first we will
define a morphism f’ : im’d® — I' as follows. By using an Exact Embedding
Theorem of an abelian category into the category of abelian groups, we define
f' for an element 'd°(y") € im’d® where 3° € J°, by

FIIAE%) = (A% f)(°).
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Since I' is an injective object we get a morphism f! : J' — I' as shown
in (7.3). By exchanging the role of I' and J' we get similarly a morphism
g' : I' — J'. Thus we obtain

0 1

-4

=

O*>A\f0 @ gt 2| g
JO /dO Jl /dl J2
Then we have
Fg*
FI*—FJ°
Ffe

in Co(#). We would like to show that the induced morphisms on cohomologies
are isomorphisms. That is, we will prove the following:

H/(Ff*) o H/(Fg*) = H/(Ff* o Fg*) =
=H/(F(f*04") = lmi(pre
B/ (Fg*) o H(Ff*) = W (Fg* o Ff*) =
=H/(F(g° o f*)) = lgi(rse)
For f®og® : I®* — I® and 17e : I®* — I° if F(f® o ¢g®) and F(1e)
are homotopic, their induced morphisms on cohomologies are the same, i.e.,
H/(F(f*og®)) = H/(F1ps). For functors H’ and F, H (F'1e) = 1y ey,
i.e., the top equation of (7.4). Similarly, H/(F(g® o f*)) = Lyi(pge). the
bottom equation of (7.4). Our goal is to prove F(f® o g*) ~ Fl;e and
F(g® o f*) ~ Fl1j.. Notice that in general for a homotopy equivalence
f1 ~ fo (namely, fi — fo = 'd o s + s o d by the definition (3.2)), we have
F(fl —fz) = Ffl—Ff2 = F(/dOS+SOd) = F’dOFS"‘FSOFd
where F' is an additive functor. That is f1 ~ f2 implies F'f; ~ F'fs. In our
case f® o g® ~ 1o implies F'(f® o0 g®) ~ Flre. Let h* = 175 — f7 o ¢/,
7 =20,1,2,.... Consider the following diagram.

(7.4)

d0 dt
0 10 It I?
s /
/ %
€ % v
/ %
OHA KO V Rl / h2 (75)
s st s s2
¢ % /
v %
¥~ /30 s /a1
d d
0 10 It I?



Derived Functors 49

Tl'D . .
For the natural epimorphism 7 = 19 / ker d° we get the isomorphism
IO/ ker d® =5 im d°
in the abelian category 7. That is, we have the monomorphism
I°/kerd® ~ imd® L 1,
ie.,

0—>1°/kerd” —> 1

lgﬁ - (7.6)
/’/

IO

where 70(z0) = h0(20) for 20 = 7°(2°), 2° € I°. Since I° is injective there
exists a morphism s' : I' — I? as shown in (7.6). In the diagram

dO

w1/ kerd (1.7)

we have
hoz110—foogozﬁaowoz(slociv())owo:slo(cflvoowo):slodo.

Asin (7.5),since [ ' =12 =...=0,1;0 — f0 0% = s' 0d%is (3.2) for
j = 0. Namely, 1,0 is homotopic to f° o ¢". In order to get s% : 1> — I' we
need to be more careful since for the monomorphism

0—>I"/kerd! —2> 2,

Al ! /kerd! — I' will not become a morphism. As for 79, since the top
sequence in (7.5) is exact, we have im € = ker d° and IO/ ker d? ~ IO/ ime.
Then

ho(e(a)) = h°(e(a)) = (1o — [0 ¢%)(e(a)) =
=(1poe—(fPog®)oe)a)=(e—e)(a)=0.
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Therefore ﬁ(ﬁ) = h9(z") was fine. Namely, since A1 does not take im d° to
zero, h! will not be well-defined. For 2° € IV we need to define

e

(Wt —d%0st): I' /kerd! (= I'/imd") — I'

as follows:

e~

(At —dO 0 s1)(d%(z0)) = (A" — d° 0 s")(d"(")) =
= (htod)(2%) — (%0 s' 0d%)(20) =
=((1p = flogh) od)(2")-
—d% (1p = fPog”)(a") =
=(1pod —dol0)(z")+
+(d%0 (f0g%) = (flogh) ed”)(a") =
=0.

For the diagram

0—I'/kerd! —2> 2

(hl/_d\(gsl)l g (7.8)
;/ S

Il

we obtain s? : 2 — I'. Then from the diagram

(7.9)

where we have put i = (h! — dY o s!) to simplify readability of the diagram,
we have

ht—d% st = (Wt —fa/oosl)wrl = (820(;1)071'1 = 520(d~1 orl) = s?od!,
obtaining h' = d° o s' 4 52 o d!. That is,

In—flogt=d0s! +s%0dh
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Consequently, 1;1 is homotopic to f' o g'. The above method is valid for
general j proving 17 ~ f® o ¢g°. As noted earlier, for an additive functor F/,
F(f*® o g®) is homotopic to F'1s. Then we get H/ (F(f® 0 g®)) = HI(F1s)
which was to be proved, i.e., (7.4). For injective resolutions /® and J*® of an
object A € Ob(</) we have an isomorphism H/(FI®) ~ H/(FJ®). The
isomorphic object R7 F' A is the j-th right derived functor of F at A (see (7.1)).
Remark 16. Let F' : o/ ~~ 98 be a covariant left exact functor. Namely, for a
short exact sequence

0 A A A" 0
in 7, we have the exact sequence

0 FA FA FA"

in Z. Then as the contravariant functor F' : o7 ~~ Z8°, F becomes right exact.
As a covariant functor F' : &/° ~» Z8°, F becomes right exact as well. As
noted in Section 2.5, an injective resolution of A in .7 is a projective resolution
of Ain &/°. Let P, = I°® be the projective resolution of A in &/°, and let
Py — A, wheren =¢°: Pp — A — 0in &° for 0 — A5 I%in 7. Then
F: o/° ~ Z° induces the complex F' P, — FA:

..%FPH?L“FPJ.Elppjjdj;i...ﬁppoﬁoﬁ\...
l . (7.10)
FA
The subquotient object
ker Fd;/im Fd; 4 (7.11)

is said to be the j-th left derived functor of F' at A denoted as L; F'A. See the
following:

F RIF

o 7 o ~ %
3o o o o (7.12)
v voour

o° B° o° B°

Those subquotient objects R/ F' A and L;FA,j7 =0,1,2,..., are generally
referred to as the cohomologies and homologies of F' at A, respectively. That
is, for a complex C'® in an abelian category

d- d—2 d-1! do

C—J j Cc—tl c! o

dO

ct B CJ O+l
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the subquotient ker d? /imd’~*, j > 0, is said to be the j-th cohomology of
the complex, and the subquotient ker d 7 / im d=7~! is the j-the homology of
C*. Namely, H/(C®) = H;(C*) and H/(C®) = H_;(C"*).

2.8 Properties of Derived Functors

For an additive left exact functor F' of abelian categories <7 and %, i.e.,
F . o ~ P, we defined the derived functor R'F : &/ ~~ 94,7 =0,1,2,...,
in Section 2.7. We will compute R’ F'A. Namely, for an injective resolution of

0 1
A0 - ASTO Ny B , ROF A is the 0-th cohomology of the complex
FI*,ie., H(FI*®) = ker Fd. Since F is left exact,

0
0 FA—L% pro XY pig g0

is exact sequence. Then ker Fd® = im Fe and Fe is a monomorphism. Con-
sequently, we have ker Fd” = im F'e ~ F' A for any object A of .«7. Therefore
we obtain,

(D.F.0) RF ~ F.
For a morphism f : A — B in .o/ we have the induced morphism
R'F:R/FA— R'FB

in 2. Namely, R’ F is actually a functor. This means that there are injective
resolutions /*® and J*® of A and B, respectively, so that

[j de Ij+1
lfj J(fjﬂ (8.1

. J )
Ji — g+

may be commutative for all 7 = 0,1,2,.... Furthermore, for a short exact
sequence

we have not only
. RiIFp . RIFy .
RIFA' —>RIFA——=R/FA",

but also 97 : RIFA” — RITLF A’ so that
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(D.E.1)

0 0 1
OHROFAIMROFAMROFA//LRIFA/M

may be an exact sequence in 4.

A proof of (D.F.1) can be done as follows. For A’ and A” let ¢ and ¢” be
monomorphisms into injective objects 'I° and "I as in Section 2.6 (i.e., the
initial terms of injective resolutions for A’ and A”). Then let I° :='1° ¢ " °
to obtain

0 0
0 A " ”IO
7
P ZG/ g 70
0 A~ : P——"1"9"1" (82
o Tl o
0 A’ ¢ o IIO
0 0

where (0 : 10 — 19 =199 "]V is defined by (°(2') = (2/,0) € "I’ ©"1° and
70 10 ="190"19 — ]9 is the projection defined by 7°(2’, ") = 2. Then
1V is a monomorphism and 7¥ is an epimorphism satisfying ker 7° = im ¢°.
Next we will show that there is a monomorphism e : A — I°. For( — A’ 2 A
and € : A’ — 'I" there exists a morphism ' : A — "I satisfying ¢ = e o0 ¢
(i.e., (5.4). Let"e =€’ 01y : A —"I° Thendefinee: A — I°="1"¢"]°
by e€(a) = (e(a),”e(a)) for a € A, obtaining the commutative diagram (8.2).
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Next consider the following diagram.

0 0 0
0—= A" — - —— - Rt
\ /
y o fim e .
0—=A———>p---T -1

/ (8.3)
€

0 0 0

As we constructed 0 — 10 — 10 — "0 for0 — A’ — A — A" — 0, for the
short exact sequence

O—>/Io/imel—>Io/ime—>"[0/im6”—>0 (8.4)

in the third column of (8.3), we obtain 0 — 'I* — I' — ”J' — 0 as shown
in the fourth column of (8.3). We define 'd®, d° and ”d° as the compositions
/IO N /IO/imE/ _ 111’ IO _ Io/ime N Il and //IO N /’IO/imEH N /111’
respectively. Thus we can obtain the exact splitting sequence of complexes

A T

0 /Io J® //I. 0 (85)

which are injective resolutions of A’, A and A”, respectively. Therefore, we
obtain the exact sequence of complexes

0 e L5 pre £ npre 0. (8.6)
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By taking cohomologies of (8.6), we get

- YU HI(FTY) —WI(FI*) — i (F'T*) -2 -

_ 8.7)
_ QJ) Hj.J,-l(F/Io)
We wish to define the connecting morphism &7 in (8.7) from
H/(F'I*) =RIFA" — WH(F'I°) =RITIFA
in the long exact sequence (D.F.1)). In the commutative diagram
(in the 1 (D.E.1)). In th ive di
0 0 0 0
.. Fg};ﬂ//l‘y ﬂ F//Ij—&-lFLdj:lF/le—FQ —_— s .. F”I.
Fri Fritl Fr®
A g L I prie o I 88)
FuJ Fu i+l Fu®
F'dit . F'dI g FYditt . .
"*)F/Ij*)F/[H»l*)F/I]JrQ*)"'- Fl[o
0 0 0 0

let
"yl € RIFA" = H/(F"I*) = ker F"'d7 / im F"d/~!
where ”'yj € ker F'di, Since Fri is epimorphic, there is a y) € FI satisfying
Fri(y?) ="yJ. Then Frit1(FdI (7)) € F" I’ equals
F'd (Frl(y')) = F'd ("y?) = 0.

Namely, F'd/(y7) € ker Fr/+!. The exactness of the second column implies
that Fd/(y?) = FiI 1 ("y/ 1) for some 'y/*! € F/I7*!. Having obtained
g3+l in F'I7+1 first we need to confirm '3/ T! € ker F'd’*! to get the coho-
mological class y7+1 € R/TF A’ = H/ L (F'T®). The commutativity of the
lower right-hand-side square of (8.8) implies

FLj+2(F’dj+1(’yj+1)) — Fde(FLj“(’yjH)) _ Fdj+1(Fdj(yj)) —

= (Fd o Fd) () = F(d T o d) (i) = 0.
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Since F1/*? is a monomorphism, we have F’d/+!("y/+1) = 0, i.e., we have
'y/ 1 € ker F'd’*!, inducing, 'y +1 € H/ T (F'I*) = R/T'FA’. Then we
define the connecting morphism ¢/ : R7FA” — RIT1F A’ as follows:

& ("yl) =Tyt (8.9

One may wish to check that the definition of &7 in (8.9) is well-defined.

Lastly, as an exercise, the reader may want to prove the exactness of the
long sequence of (D.F.1). Namely, (D.F.1) is exact if im R? F'¢ = ker R Fy),
im R/F1) = ker & and im &/ = kerR/T'F¢, j = 0,1,2,.... Since we have
ROF ~ F, which is left exact, the case 7 =0:

0— ROFA" —RFA — ROF A"

is exact. Furthermore, since R’ F'is a functor, R7 FypoR/ F¢p = R/ F(po¢) = 0
holds, i.e., ' ‘
imR/F¢ C ker R? Fy.

The remaining portion on the exactness can be proved by "diagram chasing".
Next we will prove the third property (D.F.2) of derived functors. Let us
consider the following commutative diagram.

0 A’¢AwA” 0

lf ig lh (8.10)
A

0 B B—1> pr 0

From (D.F.1), we have two horizontal long exact sequences

, RIF$ . RIFp o
- —=>RFA —>RFA—=RFA" —R/MFA —
leFf lRng LRJ'Fh lRJ’HFf (8.11)
RIF) IF

. . . 87 .
.- —=RIFB' " RIFB —= RIFB"' —>RIHFB —> -

with the induced vertical morphisms. The commutativity of the first two squares
comes from commutativity of the diagram (8.10).

(D.F.2) We will prove that the third square of (8.11)
. o7 )
RIFA" ——RItIFA
iRJ Fh lRHl Ff

RIFB" —2 = Rit1 B
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is commutative. We will give a direct proof (D.F.2) as follows.

Proof of (D.E.2). Let’I®, I® and "I*® be injective resolutions of A’, A and A”
and let’J®, J® and " J*® be injective resolutions of B’, B and B”, respectively,
as constructed in (8.5), so that the diagram

0 Te L T g 1"re 0
lf’ lg- lh‘ (8.12)
0 /J. g JO p ”SJ. 0

becomes commutative. That is, we have the following diagram:

0 0
0 0
A/I " IIIO
1/1 B/l l/Jo
A . : I° p*
S DN
é B J*®
A ¢
Al /I. qo
N y RN
Bl /Jo
0 0
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Then the functor F' : &/ ~~ 28 induces the commutative diagram of complexes.

0
!
F're 0
Fh* /F
Fr® FIIJQ
FI® . Ir®
& (8.14)
F.* FJ*
F’?I’ Fre Fq®
0 FJe
!
0

Then, by taking cohomologies of (8.14), the commutative diagram (8.12) can
be written

RITIFA"

RIF A"
RI Fyp

RIFA
RIF¢ (8.15)

RIF A R/ Fp R/HIFB

kY
RIFf
R/FB RITIEA

RIFA Rj+1FB/

R'FB’
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Notice that the commutativity of (D.F.2) is the commutativity of the rhombus
in the middle of (8.15). That is, we will prove that

(RIHLFf 0 89)("yd) = (87 o RIFR) ("), (8.16)
where "yi € R/F A" and
//yj c ker(F”dj LI F”i) F”Ij+1).

The right side of (8.16) is 6/ (FhJ("y7)), and the left side is RIT'F f("y7) as
defined in (8.9). From the following diagram at degrees j and j + 1 of (8.14)

0 0
Frd
e F//Ij 0 F//JjJrl 0
'
*)F//JJ B F”Jj+1‘>”'
) 1
Fri Fpi . Frit Fpitl
Fdi‘
FI FJitl
Fd)
L[ ]I Z FJitl o (8.17)
j+1
Fv qu Fu+ qu+1
F'd
. A .
e —— F'[I F/J]+1
Kfj wl
. P .
s —— FV JI FIJJ+1‘>...
0 0
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For "y/ € F"IJ, the diagram chasing in (8.17) becomes

//yj 0
Kh]’
Fh("y7)
A i
Jy? Fdy(y?)
A Fdi, i
Fgi dz7 Fdp(27)
(8.18)
Fgl(y7)
ng+1
/y}_ﬂ
Ffitl ‘2t
Ffei(y+h)

The cohomology class on the the left hand-side of (8.16) is determined by
Ffj+1(/yj+1) e F'JjH,
and the cohomology class on the right hand-side of (8.16) is determined by
23Tt ¢ F'J7*1 In order to prove (8.16) we need to show
AR o CAR T AR RS imFd{B.

Notice that 27+ — F f7+1('y/*1) is an element of F'.J/*! at the lower right
of (8.17). Then F¢?*! takes this element to
F@T (M) = FTHEFF(Y ™) = Fdp(2) — Fg T (FIT ()
in F.J7+1, Since Fit1('yi*1) = Fd’,(y7), the above equation can be contin-
ued as
Fg/ ™1 (M) = PPN E PP (yH) = Fdp () = Fg U (EIH (YY)

= Fdp()) — Fg' T (Fd(y)).

Furthermore, by the commutativity of the middle square of (8.17), we can can
continue as

Fdjy(2') — Fdj(Fg (7)) = Fdjy(+) — Fg ().
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For 2/ — Fg’(y?) € F.J7, the map Fp’ takes this element to
Fp/ (2 = Fg'(y')) = FIY ("y’) — Fp! (Fg’ (7))
= Fhl("y’) = FIY (Fr (y)).

Since Fm/(y’) = "y/, the above equals Fhi("y) — Fhi(Fni(y’)) = 0.
Namely, we get 2/ — F'g’(y’) € ker F'p’. Since (8.17) is vertically exact, there
exists 2/ € F'J7 satistying F'¢’ ('27) = 2/ — Fg’ (y’). In order to prove (8.16),
we need to show that 27! and F f7+1(’/*1) belong to the same cohomology
class. Namely, we must show

F'dl('27) =20 - it (it (8.19)
Since F'¢/*! is a monomorphism, instead of (8.19), it is enough to show
F@ T Fd(27) — "7 4 Ff+L(ythy) = 0. (8.20)
We will compute the left side of (8.20) as follows
Fg P (F'Ap (') = P (1Y) + Fg T (E (),
which (since Fi¢/('27) = 27 — Fg’(y’) € ker Fp/) equals
Fdy(Fe('2)) = Fdp(2/) + Fg' ™ (Fd) (7))
= Fdp(z) = Fg'(y)) — Fdp(2)) + Fdp(Fg’ (/) =0

by the commutativity of the middle square of (8.17). Consequently (D.F.2) is
proved.

Property (D.E.3)

Let [ be an injective object of <. then we can consider the following trivial
resolution of I:

l ie J/ (8.21)
0 1 0
By the definition
RjFI:Hj(--~ 0 FI 0 ):
B {0 forj =1,2,...
FI  forj=0.

Namely, for an injective object 1

(D.F3) RIFI =0forj=1,2,....
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2.9 Axioms for Derived Functors

The properties (D.F.0) through (D.F.3) of derived functors (Rj F)j>o of a
left exact additive functor F' of abelian categories <7 and % can be used as
the characterization of derived functors. For a positive integer j, let 77 be an
additive functor from an abelian category </ to another abelian category 4.
Then the sequence (77) ;>0 of functors is said to an exact connected sequence
of functors from </ to % if (D.F.1) and (D.F.2) are satisfied for (77),>, (i.e.,
replace R7F by T7 in (D.F.1) and (D.F.2)). Let € := %“. Let CSe(%) and
ECSe(%) be the category of connected sequences (i.e., without the exactness
of (D.F.1) in &) and the category of exact connected sequences of functors,
respectively. A morphism f* = (f7);>0 between objects T* := (17);>( and
S* := (57)j>0 of CSe(¢) (or ECSe(%)) is a sequence of natural transforma-
tions f7 : 77 — S7,j > 0. Then T* is said to be universal in CSe(%’) when
the following condition is satisfied.

(UCS) For an object S* in CSe(%’) and for a natural transformation A : 70 —S°,
there exists a unique morphism f* from 7* to S* satisfying f* = h.

Let 'T* := (") >0 be another object of CSe(%’) and let ¢° : "T° — T° be
any natural transformation. From (UCS) there is a unique f* : 'T* — T*
satisfying f¥ = ¢". By reversing the role we also get a unique ' f* : T — 'T*
satisfying ' f0 = 'g® : T9 — 'T°. Then we have 'f* o f* : 'T* — 'T*
and f*o/f* . T* — T* satisfying 'f* o fO = g% 0 ¢ : 'T" — 'T? and
fOo’f9 . 70 — TO The uniqueness of the morphism in (UCS) and the
identities 17+ and 1/p+ being morphisms in CSe(%’) imply that a universal
connected sequence of functors 7 is determined by 7° up to a canonical
isomorphism. This universal object T* is said to be the derived functors of T°.

Let F'be aleft exact additive functor from an abelian category .7 with enough
injectives to an abelian category 2. Consequently, if T* = (17) j>0 18 an exact
connected sequence of functors from &7 to 4 satistying (D.F.0), T° ~ I and
(D.F.3), T7(I) = 0 for an injective object I of <7, j > 1, then T* are the
derived functors of F (i.e., of T°). Namely, if 7% = (Tj) j>0 1s a connected
sequence of functors from .7 to % and if a natural transformation ~° from R°F°
to 70 is given, then there exists a unique morphism of connected sequences of
functors

h* = (b)) ;>0 : R*F = (R'F) 50 — T* = (T7) >0 9.1)
so that we may have the commutative diagram

J

RIFA" RItLE A
lhi lhm 9.2)
Ti AV it



The Derived Functors (Ext?) >0 63

A characterization of the derived functors of a left exact functor F' from an
abelian category <7 to an abelian category 4 is the following:

(1) A connected sequence of functors (Tj )j>05
(2) There is a natural transformation h : F' — T9;

(3) The universal property is satisfied, i.e., for another connected sequence of
functors "T* := ("T7);>0 and a natural transformation g : F' — T there
exists a unique morphism \ : 70 — TV so that

~
~

h

s
\\ s
s
g 20 A

/TO

commutes.

2.10  The Derived Functors (Ext?);>o

Let <7 be an abelian category with enough injectives. Recall from Section
1.6 that for A and B in Ob(.«7), Hom,/ (B, A) is an abelian group (condition
(Ab.1)) and that Hom (-, A) : &7 ~~ Ab is a left exact additive contravariant
functor. For an injective object I, Hom (-, I) is an exact functor. (See Section
2.5.) The j-th derived functor R/ Hom o (-, A) of Hom o (-, A) : &7° ~ Ab
is defined by

R’ Hom,yo (-, A)B = R/ Hom o (B, A) := H/ (Hom,- (I°, A))  (10.1)

where I*® is an injective resolution of B in &/° (i.e., I* is a projective resolution
of B in 7). The j-th derived functor R? Hom (B, -) of the left additive
covariant functor Hom, (B, ) : &/ ~» Ab is defined by

R’ Hom,/ (B, )A = R? Hom/ (B, A) := W (Hom,, (B, J®*))  (10.2)

where J* is an injective resolution of A in 27. Note that Hom (B, J*) is the
complex

’dl rqd—1 /dJ

Hom,, (B, JO)%Homd(B JY — .- —=Homy (B, J)) —
(10.3)
in Ab, and that Hom . (I®, A) is the complex

d d] 1% dl*
-+ = Hom o (I7, A) =+ — Hom yo (I, A)—>H0m¢o(l A),

(10.4)
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or
dg di dj_, dj
Hom,/ (P, A) — Hom (P, A) —--- — Hom (P;, A) — - - -
(10.5)
where P, = I°® as in Remark 15. Furthermore, one can consider the complex

(C7)j50 == ( @ HomM(Pl,Il/))jZO
I+l=j

(see the Section on double complexes in Chapter III),

(dj,'dl) (dy_/di™h) (d,'dd)

d*,/dg )
(45 )01 ... i ... (10.6)

CO

Then we have

H’ (Hom,, (B, J*)) ~ H (Hom - (I°, A)) = H/ (Hom,, (P., A)) ~
~ H/(C*).

Namely, all the cohomology groups of the complexes are (10.3), (10.4), (10.5)
and (10.6) are isomorphic to each other. See H. Cartan-S. Eilenberg, Homo-
logical Algebra, Princeton University Press, 1956, Chapter VI for a proof. This
isomorphic object in Ab is written as Exti?j(A, B), the j-th derived functor in
the sense of (10.1) (and (10.2)). Consequently, Exti{ (A, B) satisfies (D.F.0),
ie., for j > 1 Ext? (A, B) ~ Hom, (A, B), (D.E1), (D.F2)and (D.F.3), ..,

Ext! (B, I) = Ext! (P, A) = Ext/ (I, A) = 0
for an injective object I and a projective object P.

2.11  Precohomology

For a complex (C'*,d®) in an abelian category 7, the subquotient object
H/(C®) = kerd’/imd’~*, ie., the j-th cohomology of C* exists. For a
sequence C* of objects and morphisms in .o/

ci-1 Y i Y i Y (11.1)
which need not satisfy d’ o d’~! = 0, we will define a new invariant as a
generalization of the notion of cohomology as follows. First, we will introduce
two functors denoted as K2 and I =2, complexifying the sequence C* asin (11.1)
to obtain complexes K?C* and I72C*.
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2.11.1 Definitions of Complexifying Functors

Let Se(#) be the category of sequences C* asin (11.1). A morphism in f*
from C* to’C* in Se(.«) is a sequence of morphisms f7 : C7 — 'CY in & so
that the diagram

CJ & Ci+l @+
l i i poo (11.2)
107 — L1 Y

is commutative, i.e., 'd’ o fJ = fi*l o dJ for j € Z, the ring of integers. We
will define two functors K2 and I=2 from Se(«7) to the category Co(/) of
(cochain) complexes as follows. For C* € Ob(Se(.%7)) we define

20k j+1 j
KO i (ker@+ é_dj))jg% (11.3)
20" := (C*/im(d ! o dP72)) .

Then (K2C*, K2d*) and (I72C*,1-2d*) become complexes: the induced mor-
phisms K2d* and I=2d* are defined as

K*d/ (IE]) = dj|kerdj+1odj (xj)a
for 27 € ker(d’*! o d?), i.e., the restriction of d’ on the subobject
ker(d’*1 o d7),

and _
172d/ ([27]) = [d! (a7)],

where [27] denotes the class of 27 € C7 in
C7/im(d' 0 /72,
respectively. Note that
ker I72d7 = {[27] € C7 /im(d" ' o dP72) | I (2f — /7 1ad 7Yy = 0,
for some 2/ 71 € ¢V 71},
and
im 127" = {[a/] € C7 /im(d " o d/7?) | 27 = T (@),

for some 271 € CI71.
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We have the following diagram:

e

- —>ker 9’ ker 97t —---
/ (re? %
= Citl (11.4a)
X w1
(i /BT 2 CItY /B — -

NN

where we have put 9 := d’*1od’ and B’ := im 67! to simplify the diagrams.
This can also be described schematically as

K20+

.

c* (mou)® (11.4b)

N

[2C*.

2.11.2  Self-Duality of Precohomology

For C* in Se(.<) we have the two complexifying functors K2 and 12 as
shown in Subsection 2.11.1. Therefore, we can consider the cohomologies of
the complexes K2C* and I~2C*:

J K20 — 237 /im K245—1
{H(KC) ker K2d’ / im K*d (11.5)

H/(172C*) = ker 247 / im I~ 2d/ 1.

Then the self-duality theorem states that the morphism (7 o ¢)® of complexes:
K*C* — I72C* in (11.4a) induces an isomorphism on the cohomologies in
(11.5). Define h/C* := H(I"2C*) ~ H/(K2C*) which is said to be the j-th
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precohomology of the sequence C* in Se(.<7 ). We have the diagram of functors:

Co(«)
PR
hJ
fat
K;\k 4

Co(«)

Se()

o (11.6)

2.11.3  Proof of Self-Duality Theorem
Let'h?(C*) := H/(K2C*) and let

®:'W(C*) — W (C*) =HI(I2CY)

be the induced morphism from (7 0 ¢)* : K2C* — 172C* in (11.4a). Namely,
for z € 'h7 (C*) we have
O(z) = 7/ (o (x))

where ¢/ and 7/ are shown in (11.4a), i.e., ¢/ : ker(d’*! o d7) — C7 is the
canonical monomorphismand 7/ : ¢ — €7 /im(d’~!od?~?) is the canonical
epimorphism. Note that € ker(d’*! o d/) satisfies

K2d/(z) = d?(z) =0
and that ®(z) = 77 (19(x)) = [z] is in the j-th cohomology object b/ (C*) =
H/(I72C*) where [x] € ker [72d/,i.e., d (z—d' 12/ ~1) = O forsome 27—t €
CIi='as noted in Subsection 2.11.1. We will show that ® is a monomorphism.
Let ®(z) = [z] = 0in h/(C*). As noted earlier z = d/~1(27~1) for some
2971 € CI71. We need to check that 277! € K2C/~! = kerd’ o d/~1. We
compute as follows:

&/ (7N (27 7h)) = & (x) = 0.
Next we will show that ® is an epimorphism. Let m be an arbitrary element
of h(C*) = H/(I72C*). Since [z] is in ker I72d7, d/ (z — d/~ 2/ ~1) = 0 for
some 2/~ € C7~1. Then we have ®(x — d/ =12 —1) = [z — &/~ 12 ~1] = [z]
forz — &7 12~ € K2CY = kerd/™! o dJ.

2.11.4 Half-Exactness of Precohomology

Let

o o p* e 0 (11.7)

O IC*



68 Derived Functors

be exact in Se(.e7). Then we the following exact sequence in .7

(O~ hi () s pi(ro) (11.8)

for j € Z where ad := H/(I"2a*) and 1 := H7(1723*). By the self-duality
of pre-cohomologies, (11.8) may also be written as

(1) 2 i (07) i (10 (11.9)

for j € Z where ad := H/(K2a*) and 37 := H/(K23*). Namely, we will
prove the half-exactness of the precohomology functor from Se(.2/) to <7, i.e.,

ker 37 = imaJ. Let [z] € ker 37, i.e., 37 ([z]) = [#/(z)] = 0 in

W ("C*) = kerI"*"d’ /imI"*"d’~1.

Namely, [37(z)] € imI~*"d’~!. As noted earlier in Subsection 2.11.1, there
exists 3 € "C771 to satisfy d/~!(y”) = 37 (x). Since 37~ is epimorphic
there exists y € C/~! to satisfy 37~!(y) = ”. Then we have
F (@ y) —a) = (7)) = F2) ="dHF ) - Fle) =
_ //djfl(y//) . 6](1,) =0.
Namely, d/~! (y) — € ker ﬁj . The exactness of (11.7) at C* implies that there
exists ¢ € 'C7 satisfying o/ (y') = d?~1(y) — z. We will prove
d([y]) = 0,
i.e., [y] € kerI"*d/. By the remark on ker I"*d’ in Subsection 2.11.1 there
exists 2/ € 'C7~ 1 satisfying 'd’y’ —'d?("d’~1(2")) = 0. Then
Oéj+1/djy/ o Oéj+1/dj/dj_1zl _ Ozj—H,djy, o djdj_lOdj_l,Z,
=d/(d(y) — T Tl 7Y,
Therefore, it is enough to show that [a/ (y')] is in ker [72d7, i.e., that we have
[d~Y(y) — 2] € ker I-2d7. Choose y — x° € C7~! where z° is chosen to
satisfy &/ — d/d/~12° = 0 for [z] € ker ["2d/. Then
dj(dj_ly —x— dj_l(y —2%)) = ddly —dle — djdj_l(y —z°%) =
=dN(d Ty —x -y —2°) =0.

Therefore, h7 : Se(.e/) ~ & is an half-exact functor.
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Note 15. We will give an example of a short exact sequence of objects

0 /Z* Z* llz* 0

in Se(.«7) so that the induced long sequence is not exact. That is, a precohomol-
ogy sequence (h7) is not an exact connected sequence of functors. Consider
the diagram

0 0 0 0 0
id

0 Z 7 0 0 (2)

id id
0 z4>7 0 0 (1) (11.10)

id
id

0 0 7 7 0 (0)
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Complexifying (11.10) by I72, we obtain the following short exact sequence
of complexes.

Then we get

0 s hO(/Z*) hO(Z*) . hO(//Z*) hl (/Z*)

0 0 Z 0

Namely (A7) is not an exact connected sequence of functors.



Chapter 3

SPECTRAL SEQUENCES

3.1 Definition of Spectral Sequence

A spectral sequence in an abelian category .o/ consists of doubly indexed
objects of .o/
EP1 (1.1)

where p, q,7 € Z. Then EF'? may be considered as an object located at the p—
and g— axises with coordinates (p, q) at the level r. See the following figure.

Iwe q
...... o EZ?Q
- P
q
............ ' Eil’l
- P
q
........ ° Eg’g
- P

There are morphisms among objects in (1.1) as follows:

p,q

p—r,q+r—1
d?" T

Ef—&-r,q—r—irl — (1.2)

d
— -1 X
e 5 Ef rq+r Ef q

71
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so that the sequence of objects in (1.2) may form a complex. Namely, we
can consider the cohomology at any object EF*? in (1.2). Then there is an
isomorphism

n? : ker di? /im dpnatrt = EVY. (1.3)

Thatis, a sequence { EX'} is said to be a doubly indexed cohomological spectral
sequence in the abelian category ./ when condition (1.1), (1.2) and (1.3) are
satisfied. If a spectral sequence begins with EX;Y, we sometimes write such a
spectral sequence as

{(EP9, A2, n2?), v = 1o, p,q, 7,70 € L}

Note 16. Let us familiarize ourselves with the behavior of a spectral sequence
EN9 EP ... From (1.2) we have

P.q
dy

-1
dPle
p,q—1 _ p—0,q+0—1 D,q 0 p+0,q—0+1 __ rp,q+1
Eb = E} E; E; = E .

Namely, in the (p, ¢)-coordinate the "slope" is co:

P,q+1
Ey
lp’q p—1.q dzl)_l’qu’q a7 p+1,9 1.4
0 El 1 E1 ( . )
Eg,q—l

and the "length" of df? is 1. For 7 = 1, we have

Ep—l,q _ Ep—l,q+1—1 dg_lﬁqu,q dp Ep+17q—1+1 _ Ep+1,q
1 — L1 1 1 -1

having slope 0 and length still 1. See (1.4) for Ef'? and E{"Y. For r = 2, we
have

Ep—2,q+1 _ Ep—2,q+2—1d572’q+1Ep,q d3™ Ep+2,q—2+1 _ Ep+2,q—1
2 - 2 2 2 — Ly

)

i.e., the slope is —% = —%, and the length is /22 + (2 —1)2 = V5. For

the general term as in (1.2), the slope of d?*? in the (p, q)-coordinates is given
by =2t = —=L and the length of d?"?is /72 + (r — 1)2 = v2r2 — 2r + 1.
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Namely, the larger r» becomes, the closer to —1 the slope becomes and the
longer d7? becomes. Also notice that the isomorphism 7%? in (1.3) implies the
following diagram:

p—r—1,g+1
Er+1

\
p—r,q+r—1 P,q p+r,g—r+1

Er—i—l ET‘+1 d Er+1

kerdf’q/imdl,?_r’q”_l Efi;+17qir (1.5)
~|n $ (N
ker d¥?

_ _ d d _

E? r,q+r—1 qu}:‘] E113+r,q r+1

namely,

For example, if E5Y = 0, unless p, ¢ > 0 (such a spectral sequence is said

to be a first quadrant spectral sequence), then beyond 1o = max(1 + ¢, p), we
have

P,q ~ P,4q ~ e ~ P,q
EroJrl Er0+2 Eoo .
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As explicit examples of first quadrant spectral sequences, let us consider Eg 4
and E; 11 Our computation begins with

405 2,4
2 2.4 2
.E127

0,5 4,3
E, E,

(1.6)

5,12 qrmit

5,12 9,10
ES ES™.

All terms of (1.6) are still in the first quadrant, i.e., none of them is zero (object).
Therefore Eg 4 and Eg A1 are sub-quotient objects of E§’4 and E27,11’ respec-

tively. As for Eg * the next level Ei’A‘ is a subobject of Eg 4 Since dg )
Even though the next level E; s still a subobject of E2’4, and the next level
Eg Higstill a subobject of E§’4, we have

—49 2,4 8,—1
0=FEz" Eg Eg~ =0.
Namely,
2,4 ~ 2,4 ~ R 2,4
E6 2,4 E? 2,4 EOO .
Tl M7

On the other hand, for Eg ’11, Eg s a subobject of Eg 1 and then

711~ 711 &
Eq Eqy

In general, an abutment of a spectral sequence (EF? dP9 %), r > rpisa
sequence

(Ena Tp’q)n,p,qu (1.7)
satisfying the following conditions (1), (2) and (3):
(1) E™is afiltered object of <7, i.e., E™ and F,,(£™) are objects of &7 such that
<+ CFpp1(E™) CFy(E™) CFpq(E™) C -+
are subobjects of E". Then we define the p-th graded piece G,(E") as
Gp(E™) := F,(E™) /Fpy1(E™). The sequence Go(E™) = (Gp(E™))pez is
said to be the associated sequence to the filtered object (E™, Fo(E™)) in 7.
(2) EBJ exists in .o .

(3) There is an isomorphism 774 : EZ4 =, G,(E™) where n = p + q.
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When E and @, ,_,, F& are objects of the abelian category 7, we can let
E" =@, ,—p, E&'. Then define a filtration of E™ as

Fo(E") = @B EZ.
pta=n

p'zp
We have an isomorphism G, (E") = R,
Remark 17. For a spectral sequence (EX?, d"? nt?), we will construct subob-
jects ZYEPY), Z2(EP?), ..., and BY(EX?), B2(EP?), ..., of EX? asfollows.
The subobject Z1(EF?) consists of all those u € EF? satisfying d2*?(u) = 0
in EPTT T and the subobject BY(EP) consists of all those u such that
w=d?"" /) for some v/ € EPT"7T"! Then the isomorphism in (1.3)

W s 21 (Bp) /B (Ep) S B2,

sends the class [u] to 77¢([u]) € EYY, which is denoted also as [u]. For
[u] € EPY to be an element of Z'(E,), we must have 27, ([u]) = 0 in
EF 1477 Similarly, the isomorphism ntd, gives an element [[u]] € E2Y,.
Define a subobject Z2(EP?) of Z1(EP'?) as follows: u € Z'(EP?) belongs to
ZA(EP) if d7, ([u]) = 0. Define Z3(E}"?) as the subobject of Z*(E*?) as
follows: u € Z'(E["?) belongs to Z*(EP?) if d7, ([u]) = 0and d27, ([[u]]) =
0. If you let Z°(EP'?) = EPY, we have

EP1 = Z0(EP9) © ZYEPY) > Z2(EPY) D - - - . (1.8)

On the other hand, let BY(E?9) = {0} and let B'(EP?) = imd? ™+,
Then define the subobject B2(EP?) of EF? as follows: u € EF? belongs to
B2(EP?) if [u] in E”Y, belongs to im d?. [~ 7" Similarly, u € E?? belongs

r+1 r+1
to B¥(EP?) if [[u]] € E, belongs to im df;;_z’qwﬂ. Then we have
... D BY(EPY) > BY(EP?) > BY(EPY) = {0}. (1.9)

Combining (1.8) and (1.9), we obtain

EPY = ZO(Ef’q) D Zl(Ef’q) DD B2(Ef’q) D Bl(Ef’q) D {0}.
(1.10)
Then we have the isomorphism

Z°(EP) /B*(EP) = EPY (1.11)

Let Z>®(EP?) := N, Z5(EP?) and B> (EP?) := |J, BS(EY?). Then we
have
ERI ~ Z®(EPT) /B> (ER), (1.12)
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independent of r, i.e., for ¢ > 0 there is an isomorphism

Z(EP9) | B(EP) ~ Z(EVE) [BX(EPS).  (113)

These isomorphismsin (1.11), (1.12) and (1.13) can be proved inductively from
the following diagram:

0 — BX(EP?) — Z*(EPY) — Z*(EP") /| B*(EPY) — 0

s s |0 (1.14)
0 BES) = 2P B )

where the isomorphism ¢ is induced by the isomorphisms ¢ and ).

3.2  Filtered Complexes

Let C® be a complex in an abelian category <7, i.e., an object of Co(&). A
filtration on C* is defined as follows. Forall pand j in Z, F,,(C”) is a subobject
of C7 satisfying F,(C?) D Fp41(C7), and d’ : C7 — C7T1 also satisfying

@, ) (F(C7) € R
for all j, p € Z. Then the subcomplexes {F,(C®)},cz satisfy
Fp(C*) D Fppa (CF).

A complex C'® with such a filtration is said to be a filtered complex. Then the
short exact sequence

0 —=Fps1(C*) ——=Fp(C*) ——=Fp(C*) [Fpi1(C®) —=0

@.1)
Gp(C*)
induces the long exact sequence
=1 (Fp41(C*)) H(F,(C*))
(2.2)
H/(Gy(C*)) ——= W/ (Fpia (C*) — -
Then define
VPRI = HI(F(C*)
{ BP9 = W(6,(CY)) o
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We can re-write the long exact sequence (2.2) as

(VPi=p) o (VPI=P)
\ / (2.4)
Ep»J—p hP»J=P
(Ep,jfp)
where
tPi=P = 1 (F,(C*) = F,_1(C*))
and

W9 = B (Fy(C%) —— G,(C"))

and kPP is the connecting morphism @’ in Chapter II. Note also that the
bi-degrees of tP7~P, hPJ~P and kPP are (—1,+1), (0,0) and (+1,0) re-
spectively. Namely, a filtered complex (C*, (F,(C*))pez) induces a spec-
tral sequence beginning EV"?, p + ¢ = j. When EF? is the initial term, the
bi-degree of k7 becomes (r, —r + 1). Then the composition h”? o k7 is
dpa : EPY — EPTTTCTL(The Jong exact sequence in (2.4) induced by a
filtered complex is an example of an exact couple. See Lubkin, Cohomology of
completions [LuCol.)

3.3  Double Complexes

Let <7 be an abelian category. For (p,q) € Z x Z, let C? be an object of
o/ and let A% . CP4 — OPH14 and AP . CP9 — CP9+! be morphisms

(1,0) (0,1)

. . 1, s ,q+1 s . o,
satisfying dl(offo)q o dz(gl?o) = 0 and d{’o‘ff) o dl(DO‘fl) = 0. Namely, (C ’q’d(l?o))
and (CP*, df’é’l )) are complexes. In the following diagram:

A"
c—— OPatl ’ cptlatl —— ..
gy dfg 4y 3.1
dll%q
(1,0
Cr4 Cp+1,q —_— ...
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we also let d’(’a“ 11)’q o diz’iqo) = d1(71+ é)’q o dl(’(’)ql) be satisfied. Then

(e, dl()ic,loy dl()é?l))p,qez

is said to be a double complex in o7 . Next, for a double complex we associate
a complex as follows. Let

" = @ cPa. (3.2)

ptg=n
For the inclusion (9 : CP9 < C™, define d" : C" — O™t as

dn|prq — ptLla o d](Ji(,]O) + (_Dan#H-l ° d?(’)(,]l)‘ (3.3)
Then we have d"! o d™ = 0 where d” is understood as the sum of those mor-
phisms in (3.3). Namely, we have obtained the complex (C*,d®) associated
with the double complex (C**®, dzijo) , dzétl) ). Next we will define an appropri-
ate filtration on the associated complex (C®, d®) so that we may have a filtered
complex (C*®, (F,(C*))pez). Define

F(C") =Porm = P cr'e (3.4)
p'>p P +q=n
p'>p

for p,q,n € Z. Then F,(C") is a subobject of C™ satisfying
Fp(C™) D Fpa(CY)

and also d” : C" — O™ satisfies d" |, (cn)(Fp(C™)) C F,(C™1). Namely,
we have obtained the filtered complex associated with the double complex. As
before, we have the short exact sequence

0——=Fp1(C") ——=F,(C") ——=G,(C") —=0 .
Notice that

Gp(CTL) = Fp(Cn)/Fp+1(Cn) = @ Cp/,nfp// @ Cp/,n*p/ ~ Cp,nfp'
p'>p p'>p+l

That is, d” : C™ — C™*! induces d™ : F,(C™) — Fp41(C™) which induces

Gp(C™) = CPP — CPIFL=P 5 G, (C™ ). Namely, we get

Cn+1 D) Cp,n-i—l—p J— Cp7q+1 ~ Gp(0n+1)

dnT Tdﬁaﬁf’ di’a?nT T (3.5)

Cn > CPn P ——=CP1 = G,(C™)
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From the exact couple in (2.2) and (2.4), we have
EPY=H"(G,(C*) and VPP =H'(PC"T) (3.6
p'>p
where

H'(G,(C*)) = H}7P(CP*) = HY(CP*) = ker !

1
(0,1) :

/1mdpq)

Namely, we have the spectral sequence of slope zero and of length 1 at level 1:

0,1

0,1 oy d 1,1 .
E; :H%(Cov ) —— B, :H%(Cl» |
(3.7)
0,0 . 1,0 °
EYY = H)(C*®) — E;¥ = HY(CH*) —— - -

Since EP? is obtained by taking cohomologies in the direction of the g-axis
(i.e., vertically), we may begin at level zero. Namely, the initial term begins

EN =Pt (3.8)

whose level zero is expressed as:

| |

1 1,1
Eg; — 0.1 EO, — oLl
0,0__,40,0 1,0
Tdo =d1) Tdo —d<o 1)
1
E[0)70 — C0,0 E070 — 0170

That is, H{ (Ey®) ~ E7? holds. Furthermore, we have £ = H? (E]?).
Consequently, we obtain

By =HP (E7?) = H? (H{(C®*)). (3.9)

3.3.1 Abutment of Double Complex Spectral Sequence

For the filtration of C™ defined in (3.4), let us assume F,(C") = 0 if p is
greater than a certain py depending upon n, and F,(C") = C™ if p is less than
a certain p(, also depending upon n. Note that for a double complex in the first
quadrant, i.e., C?¢ = O unless p, ¢ > 0, the above conditions are satisfied. For
the exact sequence

0—> Fyp(C™") —— " ——= C" JF,(C™) — 0, (3.10)
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the j-th cohomology VP~P = H/(F,(C*®)) = 0 for p > py in (2.3). Then
in (2.4), the morphism P77 = H/(F,(C*®) — F,_1(C*)) becomes an iso-
morphism. The exact sequence (2.2) implies that EP/~P = H/(G,(C*)) = 0.
Namely, for any j and p, there exists ry such that

EPI™P » Ef(’]iflp -~ ERITP
Also, for such a filtration on C™ we have VPJ~P = H/(F,(C*®)) = 0 as noted
in the above, and H/(F,(C*®)) ~ H/(C®) for a small p. Then the induced
filtration on H’(C*®) also satisfies the finiteness conditions of the filtration of
C™ in the above.
For the long exact sequence (2.4), we can derive another long exact sequence:

(&)

(VTPJ—P) (WPJ —P)

N e
CEm (hp377)

(B29)

where V7777 = im 777 and
E{),j—p = ker(hP7 7P o kp,j—p)/ im (AP~ 1P o kP LITP),
i.e., the cohomology of

hp—Li—polp—1.0—p hP:J—PokP:d—

. . p .
Ep—Lli—p EP:J—p Ept+Li-p

and the higher V;”? ? and E P can be defined inductively. Namely,
E, = k~\(imt") /h(t~"(0))

and E, — E, is the induced morphism by h ot~" o k where the double indices
are omitted. Therefore, the long exact sequence (3.11) becomes

) t5>+17j—p+1
ypthi—p-1 0
0

D.J—P
Vi

w]fJJrroJ—p—ro—H (3.12)

D, Jj—P
hroj
kféj —p

E?D’] P E&] —-Pp
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where we have V2T 7PT1 — F_ L (HI(C®)), VEITP = F,(H/(C*)) and
yptrodmpmrotl — L (HITL(C®)). As mentioned above the induced filtra-
tion on H7(C*) also satisfies the finiteness conditions. We can find a large 7
so that we may have

BEJ 7 ~ BRI 2 Gy(H(C")) = Fy(H/(C*)) [Fyia (H/(CY))

Therefore, H’ (C*®) is an abutment of the spectral sequence of a double complex
(C.,.’ d.7.).

3.3.2 Composite Functors

Let .o/, % and € be abelian categories. We also assume that .&# and % have
enough injectives. Let F' : &/ ~» ZA and G : & ~» € be left exact additive
functors. Furthermore, assume that for every injective object I of 2/ we have

R/G(FI) =0, for j > 0. (3.13)
Since we have (D.F.0) in Section 2.8, the diagram

F

o B
g
GoF @
€
induces the commutative diagram
0
o~

!
W S/ROG
€

ie, R9GoR'F ~ G o F =~ R%G o F). Note that this commutativity will
play an important role for the notion of a derived category in Chapter I'V.

3.3.3 Cartan-Eilenberg Resolution

For an arbitrary object A of &7, let (I®,d®) be an injective resolution of A.
For the functor F' : &/ ~» 2 in Subsection 3.3.2, F'[® is a complex in .
Then an injective resolution Q*° of the complex F'I*® is said to be a Cartan—
Eilenberg resolution of F'I®. That is, for p,q € Z, QP4 is an injective object
so that (QP?), ez forms a double complex in %, and furthermore QP* is
an injective resolution of F'I?. Namely, in the following diagram in the first
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quadrant

0,1 1,1 2,1
0 Q" Q" Q>
0,0 1,0 2,0
4o 0o 0D Lo dom G149
d(1,0) di0)
0 QO’O QI,O QZ,O
60 El 62
0 Fd° 1 Fdt 9
0 FI FI FI

each vertical sequence is the injective resolution of F'/P. We will prove that

such a resolution QQ*° of F'I°® exists. First, decompose the complex F'I® as
follows:

ker F'd’ ker Fdi+!

’ / W
i — Pt —— (3.15)
paA pitl

im Fd? im Fd/+!

e

0 0 0

From (3.15) we extract the short exact sequences

J

00— ker Fdi —— F[i

im Fd’

00— im Fdi—! —% ker Fdj — > ker Fdi / im Fdi~! — (3.16)

H/(FI°)

where 77 is the canonical epimorphism. For the objects im F'd’~! and H’ (FI*)
of the abelian category % with enough injectives, let 'J® and ”J® be injective
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resolutions of im F'd/~! and H7 (FI*) respectively. Then in the second exact
sequence of (3.14) the direct product of 'J® and ”J® becomes an acyclic complex
consisting of injective objects. Consequently, we obtain an injective resolution
of ker ’d7. From the first exact sequence in (3.16) we similarly obtain an
injective resolution of F'I7 which we denote as (7. Note that we have

Fd/ =/ oadT oy

in (3.15). From the above construction of Q7-*, for j = 0,1,2,..., we obtain
the double complex Q*° consisting of injective objects of Z so that in the
following diagram:

j—1,e dj,-
Qe W Qi _ @ Qithe — ...
Ej_lT EjT EJ'+1T G.17)
HFIJ_I Fd/—t FI] Fd’ FIj+1 — > ..
(Q7°, d] ’ )1s an injective resolution of F'I7. Furthermore, ker d{’; 0)° dgl é)'

and ker df 1.0) / im d? 1, 05 are injective resolutions of the objects ker d7, im d7—!
and H7 (F T ') respectively.

3.3.4 Spectral Sequence of Composite Functor

For the double complex Q** in the first quadrant, G : % ~» € gives the
double complex GQ**° in ¥ as follows:

GQ0’2 GQ1’2 GQ2’2 R

(3.18)
GQO,l GQl,l GQQ,l I
GQO’O GQI,O GQQ,O S

Since 0 — F1* < @P* is an injective resolution as noted, the hypothesis
RIG(FIP) = 0 in (3.13) implies HY(GQP*) = 0 for g = 1,2,.... That s,
the vertical sequences in (3.18) are exact. Namely, cohomologies in the g-axis
direction are all zero for ¢ > 1. Using the notation in Section 3.3, we have
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H{(CQP*) = 0 for g > 1. Therefore, F1"? can be computed as follows:

0, forqg > 1
EP? = HY(GQP*) = H)(GQP*) = ROG(FI?) ~ G(FIP), (3.19)
for ¢ = 0.

Let us draw the spectral sequence (3.19) at level 1 of slope 0 as follows:

0! bt a2
0 0
40:0 qLo
1 1
——)— EO 0 Ell’o E%O ... (3.20)

Then the Ef ¥ terms are the cohomologies of the complex
(BT, d}°) = (G(FI%), G(Fd")).

Namely, we have

ERY = HEL(B]?) =
= H’L(HO(GQ' ")
— H,(RG(FI*)) ~
~HP (GoF)I®) =
=kerd??/imd} " =
= ker(G o F)d?/im(G o F)d~! =
— HP. (G o F)I*) =
=RP(Go F)A.

(3.21)

The spectral sequence (3.21) at level 2 with slope —5 has non-vanishing terms
on the p-axis as follows:

0 0 0 0
dy ! a ! dy

0 Ey By’ By’ By (3.22)
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Consequently, we get EX 0 EY Y~ ...~ E2Y. Then the spectral sequence
associated with the double complex (3.18) abuts upon EPT¢ = E", the total
cohomology H" (€D, ,—, GQP). From (3.20) the terms with ¢ = 0 are the
only non-vanishing terms. Namely, we have

EP =H( P GQ°) =RP(Go F)A.
p+0=e

Since 770 : GP(EP) ~ E2Y where EP = @p+q:p E29 ~ EP°. we have
ELY ~ EPY = RP(G o F)A as the abutment EP.
For the double complex (3.18), CP? := GQP4, define another filtration on

C" =@, =n O = D, =, GQP as follows:

o= P o' = P G (3.23)
a+p'=n p+p'=n
p'>p p'>p

Just as for the previous filtration FPC™ the following spectral sequences are
induced:
'ET = CTP = GQRIP
'EPY = HY(GQ®P) (3.24)
EYT = HY(HL(GQ™)).

abutting upon R (G o F') A as well. Recall that the injective resolution of the
middle object of (3.16) was the direct sum of the injective resolutions of the
left and right objects. Namely, the short exact sequence in (3.16) is a split exact

sequence. Hence we have EPY = G(H, (Q*P)) < HL, (GQ*P). Then'EL*
in (3.24) becomes
B = HY(HY.(GQ")) ~

R H?(G(H‘L(Q"'))) ~ (3.25)

~ RIG(HL(FI')),
where the last isomorphism holds since HZ, ((Q**) is an injective resolution
of H%,(FI®). Furthermore, since °® is an injective resolution of A, we have
H%,(FI*) = RIFA. Thatis, 'EY? = RPG(RIFA), completing the proof
of: a spectral sequence associated with a double complex implies a spectral
sequence induced by a composite functor,

EP?=RPG(RIYFA) abuttingupon R"(Go F)A, (3.26)

where n = p + q.
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3.3.5 The converse

Let A® be an object of the subcategory Co™(.«7) of bounded from below
objects of Co(.27) as in Notation 12 in Chapter II. Namely, an object A® of
Co™ (/) is a complex satisfying A7 = 0 for j < 0. We will prove that the j-th
cohomology H7(A*®) is the j-th derived functor of the 0-th cohomology of this
complex. That is,

HI(A®) = R/H'. (A%) = RV ker(A° &% A1), (3.27)

First we will characterize an injective object of Co™ (<) as follows. An object
I* of Co™ () is injective if each I7 is an injective object of <7, and
d2

d° d!

0 10 It I? (3.28)
is exact, i.e., kerd’ = imd’~! for j = 0,1,2,..., where d~! is the zero
morphism and ker d° is an injective object of 7. In order to prove the statement
(3.27) we will use the Buchsbaum Theorem which asserts the following. For

this exact connected sequence of functors H/ : Co™ (&7) ~~ &/, H/ becomes
0
the derived functor of HO(A®) = ker(A? L A1) if the following condition is
satisfied:
For an arbitrary object A® of Co™ (.27), there exists a subobject " A®

o i , (3.29)
of A® satisfying H’("A®) = 0, for j > 1.

We construct such a subobject A® as follows. Define 'A® as given in the
diagram below:

A® = Ai2 i P P
. /dj—2 ,l ldj—l /d]
TA® ... —1 452 rp4i—1 TAT — -
(3.30)
Ai—2 ATl @ker dl L= 4
YQ /
AL

where we have put d := d?~! @ 1. Then’A® is a subobject of A°*. From (3.30)
we have'd’~? = 1od’"?and'd’~! = d’~! @, and the other 'd® are the same
as d®. Since ker’d’ = kerd’ and kerd’ C im’d’~! = im(d’ @ ¢) we get
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H/("A®) = ker'd’ /im’d?~! = 0. Therefore,
HI(A®%) = RFH'. A® = R7 ker(A° 2 A1),

We will interpret the spectral sequence associated with a double complex as
the spectral sequence induced by the composite functors as shown below.

HO
Co™(Co™ (7)) L Cot(&)
M - (3.31)
HO0HY "~ o

Namely, H(T) is the cohomology in the g-axis direction of a double complex as
a complex of a complex in Co™ (Co™ (%)),

c%® ... 0 c*l 2 - 1

Then for the left exact functor H[T) and for the injective object I*® of the category
Co™ (Cot (7)),
HY(1**) = ker(I*° — I*')

is an injective object of Co™ (.e7). We get the derived functors of H? ,
R/HY, (HY(I**)) =0 for j>1.

Therefore we can apply the spectral sequence of a composite functor to the
diagram (3.31) obtaining

'EYY = HP_(H{(C**)) = RPH (RIH)(C**)). (3.32)

Next we pay attention to the abutment of this spectral sequence. From the
definitions in (3.2) and (3.3) we have

CO _ C0,0

Crl — Cl,O D CO,I

where d° : €0 — C' is given by d° := d?i(,)o)

a5 d?[’)ol). That is,
(H, o HY)(C**) = kerd’ = H’(C®),

where C* is the complex defined by C™* := @p +q=n O asin(3.2). Therefore,
the spectral sequence (3.32) abuts upon R" (H, oH(T)) (C**) =R"H"(C"),i.e.,
the total cohomology H"(C*).
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3.3.6 Hyperderived Functors

Let F' be a left exact covariant additive functor from an abelian category .o/
to an abelian category Z. Then for an object A® of Co™ (.&7), F'A® is an object

0 1
o _Fd 1 Fd

0 FA FA

of Co™(%). This assignment induced by F' is a functor Co™ F' from Co™ (/)
to Co™ (). Then we get the following commutative diagram of categories and
functors:

CotF

Cot () Cot (%)
; ;
EHO F gHo (3.33)
2 !
/ p ¢
o i

where (F o HY)A* = F(ker d°) for an object A® of Co™ (.«7). Since F is a left
exact functor, we have

(FoH%)A® = F(kerd’) = ker(FA° rd, FAY. (3.34)

Namely, H(Co™ F A®) = F(H" A®) holds. We write the composite functor as
F. Since F and HY are left exact, F is a left exact functor from Co™ (&) to
AB. We apply (3.26) to the spectral sequence associated with those composite
functors in (3.34) obtaining:

ED? = RPHY(RYCo™ F)(A®) = HP((RICoT F)(A®))

(3.35)
'ER* = RPF((RTH")(A®)) = RPF(H(A%))

abutting to R" F'A®, n = p-+q. For those spectral sequences in (3.35) to exist we
need to confirm the following. For an injective object I* of Co™ (.7, the higher
derived functors of H and F evaluated at F'I® in Co™ (%) and H(I®) in .7,
respectively, must vanish. We will prove the corresponding, the clockwise and
counter clockwise statements of the diagram (3.33). That is, we will confirm

0 o\ o\
{RPH (FI®) =HP(FI*) =0,p>1 (3.36)

RPF(HOI®) = RPF(kerd°) = 0,p > 1.

The first assertion of (3.36) means that the complex F'I°® is exact for p > 1.

0
By the definition, ker (1° Ny 1Y is an injective object of .27. Then we get two
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0
injective resolutions of ker d’ = ker(/° RNy 1) in the sense of Section 2.6 in
the previous Chapter. Namely, we have

P—*>ptp &
/
ker dO (3.37)
\6/
ker d° 0 0
From those injective resolutions of ker d°, we get two complexes
Fq° Fd! Fd?
FIY FI' FI?
(3.38)
Fkerd® 0 0

From the second sequence, H?(Fkerd” — 0 — 0 — ---) = 0 forp > 1.
Namely,

HP(Fkerd®” =0 —0—---) =RPF(kerd’) =0,  forp>1,

proving the second assertion. Since the derived functor is independent of the
choice of injective resolution, the derived functor R” F'(ker d”) can be computed
via the first complex of (3.38). That is, RPF (kerd’) = HP(FI®) = 0, for
p > 1, proving the first assertion of (3.36).

Consequently, the abutment R"F A®, where [’ = H o Cot F = F o H?, of
the spectral sequences (3.35) is said to be the n-th hyperderived functor of F
evaluated at A®. We often write R" ' A® simply as R"F A®.

The derived functor RICoTFA® of Co™F : Co™ (&) ~» Co™ (%) is the
complex

Rep A0 B Rap gt BT pop g2 BPE

in Cot(%). Namely, (R/Co™ F) ;> satisfies (D.F.0) through (D.F.3) in Chapter
II. Therefore, we can begin the spectral sequence E%*? in (3.35) from E}%:

d(l),q diyq dﬁ)—l,q zlJ,q
E?7q > E%’q o« Ef’q
(3.39)
RIFdO° ReFd! RIFdP—1
RIFA? —=RIFA! a RIFAP —— -

ie., B0 = HP(E}'?). That is, from the commutative diagram (3.33), we get
the useful spectral sequences
{E{”q — RIFAP

'EPT = RPF(HI(A®)). (3.40)
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3.3.7 Hyperderived to Composite Functor

Let o/, %, and € be abelian categories such that </ and % have enough
injectives. For left exact functors F' : & ~~ % and G : & ~ €, the diagram

BN

induces the commutative diagram

N~

R =<~

o (3.41)

Co*G +

7

Then for an object A®* = F'I°®, where I°® is an injective resolution of A in 27,
the spectral sequences in (3.40) become

o (3.42)

<\;\;\x\/\f\f\,
<\;\_/\/\/'\/\./\_/

(3.43)

EPY — RIGAP
"B} = RAG(HP(A)

Wi‘th the abutment R*GA®, where n = p + ¢q. The assumption (3.13), i.e.,
RIG(FI) =0, j > 0, for an injective object I of <7 implies

EPT=RIGAP =RIG(FI?) =0, forqg > 1
in (3.43). Therefore, EY 0 can be computed by taking the cohomology of

EP70 EZH‘LO .. ..

— (Go F)I""' — (Go F)I" —= (G o F)IPT! —

e—_ 5 EP—LO

Namely, Eg’o = HP(E;’O) = HP(RY(G o F)I®) ~ HP((G o F)I*). By the de-
finition (7.1) of the derived functor, we get E? R 1 (GoF)A. Consequently,
we obtain E2 = RP(G o F)A ~ ER’ ~ EP = RPGA®, the abutment. On
the other hand, ' E®"? in (3.43) can be computed as follows.

'EY? = RPG(HY(FI®)) = RPG(RIF A)
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abutting upon E" = R"GA® ~ E}"" = R"(G o F)A. Namely, we get the
spectral sequence of a composite functor from the hyperderived functor spectral
sequences.

3.4 Cohomology of Sheaves over Topological Space
As in Section 1.10 in Chapter I, let T" be a topological space and let .7 be

the category of open sets of 7. Let 7 be the full subcategory consisting of
sheaves, as defined in Definition 5, of the category .7 of presheaves over .7 to

~ ~

an abelian category .27. In Section 1.10 the stalk of ' € Ob(.7") C Ob(.7) at
x € T is defined as the direct limit F,, = lim F'U, where the limit is taken over

all open sets U such that x € U. For a short exact sequence

0 F’ F F” 0 4.1)

of sheaves over .7, we have the induced sequence

U ru Y g (4.2)

in the abelian category <. We will prove that by taking the direct limit lim

—

(over U with x € U) of the sequence (4.2) we obtain the short exact sequence

(in o)

P e

0 F! F, FE/ 0 (4.3)
of stalks at x. Namely, we will show that
lim: T ~ o

—

is an exact functor. By the definition in Definition 5 in Chapter I, the induced
morphism

¢r F. — F,
is a monomorphism. Then we canonically get

Pu

0 F! F, —> coker ¢y —> 0 .
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From the following four short exact sequences

0 Fl— % o p ™ . cokerdy ——>0
id id ~
0 tim U i FU e g), g
) ; N (4.4)
0 F b F, (sh coker ¢)y, —=0
id id ~
0 P F,— 0

we get the exactness in (4.3). Note that coker ¢ is the sheaf associated with
(coker p)U = coker ¢y as in (14.9) in Chapter I, and sh coker ¢ is the sheaf
associated with the presheaf coker ¢ as in (15.1) also in Chapter I.

3.4.1 Left Exactness of Global Section Functor

For a sheaf F" and an open set U of 7" we assign an object F'U in 7. Namely,
we have the functor ~
T X T ~ o 4.5)
defined by
(F,U) = FU .

This functor is covariant in .7 and contravariant in .7. For an open set U of
T, the covariant functor induced by (4.5), - U : .7 ~» &7 is denoted by I'(U, -).
That is, I'(U, F') = FU. Then for the exact sequence (4.1), we have the exact
sequence

0——=T(U,F)—=T(U,F)—=T(U,F")

(4.6)
0 FU FU U

Namely, T(U,-) : .7 ~» < is a left exact functor, and is said to be a global
section functor. One can prove the left exactness of I'(U, -) by the exactness
of (4.3) and the sheaf axiom (Sheaf) in Definition 5 in Chapter 1. On the other
hand, decompose the functor I'(U, -) as

47
r(Ub\ /CU) @7
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where ¢ is the inclusion functor as in Section 1.15 and (-, U) is defined by:

~

For FeOb(F), (,UF=(FU):=FU.

We have shown that in Section 1.14 the presheaf (ker¢)U = ker )y of the

sheaf morphism F Y, F" is a sheaf, Namely, I'(U, ker ) is the kernel of
Yy : FU — F"U, ie., ker(tF — (F") in 7. Therefore, the composition
of this left exact functor ¢ with the exact functor (-, U) is the left exact functor
I'(U,-). That is, for the exact sequence (4.1) of sheaves, the epimorphism v,
at each point does not guarantee the epimorphism of ¢y : FU — F"U.

3.4.2 Derived Functors of Global Section Functor

We need to show that the category 7 of sheaves over .7 to 7 is an abelian
category. That is, we must verify (A.1) through (A.6) in Section 1.6 for 7.
We will give an explanation (not a proof) for this fact. Let ¢ : F' — G
be a morphism of sheaves in .7. We have already proved that the presheaf

ker ¢y = ker(FU du, GU) is a sheaf. (See Section 1.14). Let coker ¢, im ¢
and coim ¢ be the associated sheaves to the presheaves as defined in Section
1.14. For example, coker ¢ = sh(presheaf U +— coker ¢y7) in Subsection
1.15.1. Then, in &7, we have (ker ¢), = hgl(ker ou) = ker(liin @) = ker ¢,

(im @), = im ¢y, (coker ¢), = coker ¢, and (coim ¢), = coim¢,. By
using the fact that a sheaf morphism ¢ : F' — G is determined locally, i.e., an
isomorphism at each stalk F, ~ GG, induces an isomorphism of sheaves F' Z,
G (namely, the converse: (4.3) implying (4.1)), we obtain an isomorphism
coim ¢ ~ im ¢. ~

Let I be a sheaf so that Hom (-, I) is an exact functor from .7 to the
category Ab of abelian groups. That is, [ is an injective object in T satisfying
the universal mapping property in Section 2.5. Then [ is said to be an injective
sheaf . The j-th derived functor of the left exact functor I'(U, ) : T ~ of at

F € Ob(7) is defined by
RT(U,-)F = H/(T(U, I*)) (4.8)

where I*® is an injective resolution of F' as in Section 2.6. Then the j-th derived
functor defined by (4.8) is written as H’ (U, F') which is called the j-th coho-
mology object over U (the j-th cohomology group if o7 = Ab) with coefficient
in F.

Next we will introduce another kind of a sheaf which plays the same role as
far as cohomologies are concerned. A sheaf .# € Ob(.7) is said to be a flabby
sheaf if for open sets U and V satisfying U C V/, the restriction morphism

pv :T(V,.7) — T'(U,.7) (4.9)
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is an epimorphism. Very important examples of flabby sheaves are the sheaves
2% and € of hyperfunctions and microfunctions, respectively. We will come
back to the cohomological aspects of those sheaves in Chapter V. We will prove

that for two resolutions of a sheaf F' € Ob(.7); one by injective sheaves and
the other by flabby sheaves:

FST°
P (4.10)
F — Z°,

the induced complexes I'(U, I*) and I'(U, #*) have isomorphic cohomolo-
gies. Namely, H(I'(U, I*)) and H(I'(U, .#*)) are isomorphic objects of .o7.
Namely, complexes I'(U, I®) and I'(U, .#*®) are quasi-isomorphic. Re-write
(3.33) as

- CotT(U,)

Cot(7) Cot (o)
| :
{00 { o (4.11)
: §
O f
T o

Then apply the spectral sequences (3.40) to the above commutative diagram
(4.11) to get

{Ei”q = RID(U, )(F?) = HI(U, F7) (4.12)

'EDY = RPT(U, -)(H9(F*)) = HP (U, H9(F*)).

Note that the functor H° : Co+(<7~ )~ 7 is associated with the presheaf

0

H(Z*(U)) = ker(F°(U) 2o, Z1(U)), which is a left exact functor from
Co™(7) to 7 and that HI(.Z*) is the g-th derived functor of H". Note
also that HY(.#°*) may be regarded as the associated sheaf to the presheaf
HY(Z*(U)) = ker(F1(U) — Z9(U))/im(F 1 (U) — F9(U)). Since
F* is acyclic, i.e., H1(F*) = 0 for ¢ > 1, we have "EY? = 0 forq > 1
in (4.12), and 'EP? = HP(U,H°(#*)) ~ HP(U,F). By the definition of
HP(U, F) in (4.8) we have

HP(U, F) := RPT(U,-)F := HP(T'(U, I*)). 4.13)

On the other hand, for each flabby sheaf .#?, we have that H4(U, #7) = 0,
for ¢ > 1. (Afterwards we will give a sketch of the proof.) Then EV'? =
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HY(U, .#P) = 0 for ¢ > 1in (4.12). That is, we have
i =T U FP— I)HF(U G‘P)HF(U {gm—l)*y..

(4.14)

Epl(] apte Po i Lo
1 > L

Therefore, E2° is the cohomology HP(EPY), ie., EY? = HP(D(U, . Z*)).
Since we have E?° ~ EP’ ~ ... ~ E%’ and EP = Dyio=p B2 ~ ERY,
we get EV? = HP(D(U, .#*)) = EP. Consequently,

'EPY ~ HP(U, F) = HP(D(U, I*)) ~ EP = HP(T (U, Z*)).
Namely, the derived functors
HP(U,F) = RPT(U, ) F

can also be defined in terms of a flabby resolution of F'.

Notes 17.(1) As observed in the above proof, EI"? = HY(U, #?) = 0 for
g > 1 implies the isomorphism between the derived functor HP (U, F') and
the cohomology HP(I'(U,.#*®)) of the complex I'(U,.#°®). That is, any
resolution 'I*® of F' satisfying H?(U,’IP) = 0 for ¢ > 1 provides an iso-
morphism between HP (U, F') = HP(T'(U, I*)) and HP(I'(U,’I*)). Such an
object as 'I? is said to be an F'-acyclic object.

(2) In general, complexes G* and 'G*® of an abelian category are said to be
quasi-isomorphic when their cohomologies HY(G*) and HY('G*®) are iso-
morphic. Therefore, for quasi-isomorphic complexes G and 'G®, the spec-
tral sequences of hyperderived functors of a left exact functor F' give the
isomorphism

/Eg,Q(GO) _ RpF(HqGo) ~ lEg,Q(IGo) — RpF(HQ(lGo)) (415)

Consequently, their abutments, their hyperderived functors, R"FG® and
R™F'G* are isomorphic. In particular, for quasi-isomorphic complexes of
sheaves G* and 'G*®, their hypercohomologies of sheaves H" (U, G*®) and
H"™(U,’G*) are isomorphic. Notice that if I® and .7* are resolutions of a
sheaf F' by injective sheaves and ﬂabby sheaves, respectively, their hyper-
cohomologies H"(U, I*) and H"(U, .#°) are isomorphic. This is because
H(I®) = 0 and H(.F*) = 0 for ¢ > 1. On the other hand, either
from (3.40) or from (4.12), EV'?(I°) = HY(U,I?) = 0 and EVY(F*) =
HY(U,.7P) = 0 for ¢ > 1. Then their isomorphic abutments, the hyper-
cohomologies, H"(U, I*) and H"(U,.%#*) become the isomorphic coho-
mologies of complexes: H"(I'(U, I*)) = H*(U, F') and H*(T'(U, #°)), as
shown in (1).
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(3) We will sketch a proof of HY(U,.%#) = 0, ¢ > 1, for a flabby sheaf .Z.
Embed .# into an injective sheaf I. Then we have the exact sequence of
sheaves

0 F——=1—">1|F 0.
Then, the exactness of (4.3) implies that there exists W to obtain the epi-

morphism I(W) =% (I/.#)(W) — 0. For W C V, the flabbyness of .7
and also I implies the following commutative diagram

0 0 0
0
ﬁ(Tm w I<%v> A0 e
FV) s 1(V) o (1) F) (W) — 0

Namely, I /.% is also a flabby sheaf. Then for the exact sequence
0—-F —>1—-1/7—0

of sheaves, (D.F.1) in Section 2.8 becomes the long exact sequence

0—=TU, %) L1, —>1(U1)F) —>
——HY U, #)—H\(U,I) —=HY U, 1/ 7)) ——  (4.17)

Then one can prove that 7y : I'(U, I) — I'(U,I/.%) is an epimorphism.
Therefore, Hl(U, Z) = 0. Since I is an injective object of .7 we have
HY(U,I) = RT'(U,-)I = 0 for j > 1. Hence, in (4.17) we get

YU, 7)) & H(U,1).7)
for j > 1. Since I/.Z is also flabby, the induction implies H/ (U, %) = 0
for j > 1.

343 Cech Cohomology

Let F be a presheaf over a topological space T, i.e., F' € Ob(.7), where
7 = /7" asin Section 3.4. Namely, F'is simply a contravariant functor from
the category .7 induced by the topological space T to the abelian category
/. Let I be an index set. For each ¢ € I, let U; be an open set of T,
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ie., U; € Ob(.7). Then the inclusion ¢ : U; — T induces the morphism

oG
F(T) = F(U;) in & which is said to be the restriction morphism. Assume

that (U;,1 € I) is a covering of T, i.e., T' = U U;. For o’ - U;NU; — Uj,
letus write pj; : F(U;) — F(U; N Uj). Similarly, e.g.,

Pt F(Uij) = F(Uyy)

where U;; = U; N U; and Uy, = U; N U; N Uy. Then we have the following
sequence of restriction morphisms:

" szkziz
i ngk ikl
Pm 7;“]: Pijkl (4 1 8)
HF(Uz) le HF( ) HF(Uijk) pijécl
ijk 7
’ Pijkl
—_—

Letd" := p{] — pij,and d' = p{fk i+ pwk, e tc. Then, e.g., for (f;) €
[Lic; F(U;), we have

d°((£) = pl;(F) = pis(£)
and for (f;) € [1; je; F'(Uij), we have

d'((fi)) = Pffk(fjk) — i (Fir) + P (fig)-
In general, define

n 1102 2n+1 - 1002 2n+1 . o i 40 10541 a1
d pZOZI Zn+1 pZOZI Z'r7,+1 + + ( 1) pZOZI Z'r7,<‘r1 (4 19)
IS ( 1)n+1 1081 Tn .

pZOZl i1’

Let
CiHUie I, F) = CH(%,F) = H F(Uig-i,)

105505 €1

where we, for ease of notation, write % := (U;,i € I). Then (4.18) becomes
0 1 2
CO(%,F)LCQ(OZ/,F)LCQ(GZ/,F)L"' (4.20)

Since d’t1od’/ = 0 s satisfied in (4.20), C*(%, F') is a complex which is said
to be a Cech complex. The cohomology

H/(C*(%,F)) :=kerd’ /imd’~* 4.21)
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of (4.20) is said to be the j-th Cech cohomology object (Cech cohomology group
if o is the category Ab of abelian groups) of the covering % = (U;,i € I) of
T which is written as H7 (%, T, F) or W/ (% , F).

As we noted in (3.27), the j-th cohomology (4.21) is the j-th derived functor
of the 0-th cohomology of the complex C*(%,F) = C*(U;,i € I; F). Let
us study HY(C*(%, F)). Namely, we compute kerd’ = H°(C*(%, F)) of
(4.20) as follows. Let (f;) € C%(%, F) =[] F(U;) satisfying

d°((fi)) = Pl (f5) = Ply(fi) = 0

for ¢, j € I. Therefore, if this presheaf F'is a sheaf, then there exists a unique
f € F(T) satisfying p! (f) = f; forall i € I. (See Definition 5 in Chapter I.)
That is, we have the following diagram

~ L ~

s )

HO (% ,-)=HO(C* (% ,-))=ker d° (4.22)

-
—~
e
N
PPN

o

ie., for F € Ob(7), HY(%,.F) = T(T,F) = ROT(T,-)F. Recall that
for an exact sequence 0 — F' — F — F” — (in 7, we only have the
exact sequence 0 — (F’" — +F' — (F" in 7. Then for an injective sheaf
I (an injective object of .7), we have RIHY(%, ). = HY(% ,.I) = 0O for
q > 1 (which however requires a proof). We get the following induced spectral
sequence from (3.26):

EPY = HP(% ,RULF) (4.23)

abutting to H"(T", F') = R"I'(T), -)F.

Next, suppose that 0 — F' — F — F” — 0 is an exact sequence of
presheaves. We have the exact sequence 0 — F'(U) — F(U) — F"(U) — 0
for an arbitrary open set U. Then we also have the exact sequence

0—CH(U  F) —— CH (U, F) — CH (U, F") —=0
@2
OHHF/ 0 1)4>HF 70 z])HHF, 10" 1])4>0

for an open set Uj,...;;. Namely, we get the exact sequence of complexes

0—=CU,F)—=C*(U,F)—=C*(%,F") —>0. (425
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Then for (D.F.1) in Section 2.8 we get the following long exact sequence
0——H"(%,F')—H"(%,F)—H"(%,F") — -
(4.26)
o ——H/(%,F)—HW (U, F) —HW (U,F') —---

For coverings % = (U;,i € I) and %' = (U},,i' € I') of T', ie., T =
UierU; = Uyep U}, if there is a mapping p : I' — I satisfying U, C U,
forall ' € I', 7' is said to be a refinement of 7/. Then the inclusion

Usiy-it, = Uy N0z 0=+ O = Upigypit) = Up(ig) N+ - N Uiz (4.27)

induces the restriction morphism

F(Uy @) — F(Uiis..it)- (4.28)

ig)p(iy)-p
For a sequence of refinements
02/ %/ q/// e (429)

we get the induced sequence of complexes and their cohomologies of these
complexes

C(%,F)——=C*(%',F)——=C*(%"F) ——--- (4.30)
and

(% ,F)—W (@' F)—H (%", F)—---, (4.31)
respectively. Then define

(T, F) = lim( H(%, F) ——H(%', F) — -+ ), (4.32)

which is said to be the j-th Cech cohomology object of T' of the presheaf F.
Since we have H*(% ,.F) = I'(T, F), i.e., (4.22), for j = 0 we get

H(T,.F) =T(T, F) (4.33)
in the diagram
T : T
:
e EHO(T”) (4.34)
v

<f
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By applying the spectral sequence (3.26) associated with composite functor to
the above diagram, we have

EPY = RPHY(T, -)(R%F) = RPHO(T, RILF) (4.35)

abutting upon H" (7T, F'). Note that the definition of the Cech cohomology of
T at F is given as a direct limit, i.e., (4.32). On the other hand, HP (%, -)
is defined as the cohomology of the complex C*(%, F'). Then, from (3.27)
we have that the p-th cohomology HP(%,-) of the complex C*(%,-) is the
p-th derived functor RPH®(%, -) of the 0-th cohomology H°(%, -). However,
as we mentioned in (17) (3), H?(%,#) = 0, p > 1 for an injective .% (for
a flabby sheaf). Consequently, since the direct limit is exact, RPHO(T ,+) in
the spectral sequence (4.35) coincides with the Cech cohomology HP? (T,).
Namely, HP(T, -) becomes the derived functor. Let us re-write (4.35) as

EY? = TP(T,RUF) (4.36)

abutting upon H" (7', F'), n = p + ¢q. The coefficient sheaf R%.F in (4.36) can
be computed as follows. Since ¢ is left exact, we have R%.F ~ +F by (D.F.0)
in Section 2.8. Therefore, for an open set U € Ob(.7),

R F(U) =F(U) ~ F(U) ~T(U, F).

Since HP(U, F') = RPT(U, -)F, we get RPLF(U) =~ HP (U, F).
Let us study the spectral sequence (4.23) to understand the spectral sequence
in (4.35). The EY"?-term of (4.23) is, by definition the (4.21), given by

EDY = HP(C*(% ,RUF)), 4.37)
where C*(% ,R1F) = [[R9F (Uyyi,...i, ). In the above, we computed
RqLF(Uioilmip)

as H1(Ujyi,...i,, F'). When HY(Uj;,...i,,, F') = 0 for ¢ > 1 we have EY? = 0
for ¢ > 11in (4.37). Then we get

-2,1 2,~1
0=EFE? ’—>E§’O—>E§+’ — 0.

Consequently, we have E2? ~ E§’O ~ EE ~ EP ~ HP(T,F). That is,
Eg’o = HP(% ,R\.F) ~ HP(% ,uF) = HP(% , F) ~ HP(T, F). Summariz-
ing: under the condition HY(Us,...i,, F') = 0 for ¢ > 1, the Cech cohomology
of the covering % coincides with the derived functor of the global section func-
tor (7T, -),i.e., H?(% , F') =~ HP(T, I). In particular, for H?(Usys,...i,, ') = 0
for ¢ > 1, the Cech cohomology in (4.32) of T is isomorphic to the derived
functor, i.e., H?(T,R*.F) ~ HP(T, F) ~ HP(T, F).
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344 Edge Homomorphisms

As observed in the above, E%"!-terms play a role in obtaining a morphism
(or an isomorphism) between initial terms and abutments. Let us begin with
EY%-terms of a first quadrant spectral sequence for p = 0,1,2 and ¢ = 0,1, 2
as follows:

(4.38)

_1
2

Notice that the slope of d5'? is —% as seen in Section 3.1. Since

—1,1 1,0
d; 1,0 d3

0
EY° 0 and 0 Ey

0,

we have Eg’o ~ E&P ~ E° and E;T’O ~ Eclx’)o — Eclx’;0 &5 E&l = E, re-
spectively. Namely, we have the monomorphism ¢; : EQI’0 < E! given by
0 (z2y") = (25°,0) for 2y € Ey°. Next, as for Ey"' we have

4-22 0,1

2 0,1 do 2,0
0 ES E20.

0,1 0,1 0,1 0,1 0,1 .
Hence, E5 ~ kerd, . Namely, we have kerd,” ~ E3 < FE). Notice

1 1.
that we have Eg’ ~ 85 since

q-33

0,1
0—=— E,

0,1
dg

0.

1 1 1 1 m 1
Therefore we have E' = EX’ @ E%' ~ Ey° @ EY' ™ B!, where

ﬂz(azé’o,xg’l) = mg’l. Combining the above ¢ : Eg’l = ker dg’l — Eg’l
. o
with o : Bl — Eg’l, we get BT 22, Eg’l. Next, for

01 dyt 90 d3°
Ey — By — 0

in (4.38), E:,Z) ¥ is the cohomology Eg 0 /im dg’l. That is, we have the epimor-
phism 7 : Eg’o — Eg’o. Then, as before, we have Eg’o R EE;P. Since the
abutment is F2 = Eg’f ® E;gl @ Eil_)o, we get E32’0 3, E2. The composition

t3 o 7 is the morphism E;,o 2%, E?. Consequently, we obtain the following
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commutative diagram of initial terms and abutments:

0
Ey°
Ln
o7 0,1 dg’l 2,0 L30T 9
E! E? E (4.39)
@ El 0 . - E @ E ED E20
~ <
EOl g 0T B0 720
0

For general p and ¢, we will study the edge terms EX Y and Eg ! on the p-axis
and g-axis, respectively. Let us begin with EY ¥ on the p-axis. Since we have

p—2,1 p,0

p—2,1 dy p,0 92
B E 0,

the cohomology at £} 0 gives the natural epimorphisms

p70 ™ p70 ™ p70 ™ p,
Ey” — By — By — - By Ep+1’
p70 1 1 1 p,O p70
and beyond £, are the isomorphisms, i.e., Ep\y Ep "o & Ex. By

combining all those epimorphisms and isomorphisms with the monomorphism
L2 B2 — EP, we get the morphism from E2" to the abutment:

° —1
gr0 e pe (4.40)

which is said to be the edge morphism. Next, as for Eg ! on the g-axis, we have

00 927 2g-1
O — E27q LN E27q .

The cohomology Ey? at E9 gives the monomorphism ¢ : ES? < Ey?. By
combining those induced monomorphisms with the isomorphisms

0,q9 ~ ~ 0,q
E Eq+3 Eq+2’

we have .
pa em, Eg"l, (4.41)
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where 7 : B9 — E%. The morphism (4.41) is the other edge morphism to
E3 on the g-axis from the abutment EY.

The trivial cases of the edge morphisms applied to (4.36) are, e.g., at the
edge (the origin) EY°, we have 0 — Eg’o — 0. Since E2’0 ~ E% ~ E° we
get ES? = HY(T, F) ~ E° = H(T, F). Another example 0 — £, ‘5 E1
becomes 0 — HY(T, F) — HY(T, F).

3.4.5 Relative Cohomology of Sheaves

Let U be an open set of a topological space 7', i.e., U € Ob(.7) and let
F be a sheaf over .7 to an abelian category <7 (or the category Ab of abelian

groups), i.e., F' € Ob(.7). Then for V'« U we have the restriction morphism
pl; : F(V)=T(V,F) — F(U)=T(U,F). (4.42)
Define I'(V, U, F) := ker p};. The following sequence

,
0—=T(V,U,F)—=T(V,F) 22~ (U, F) (4.43)

is exact. When F' is a flabby sheaf, p‘U/ becomes epimorphic. (See (4.9).)
Hence, F is flabby if and only if H(V,U, F) = 0. This is because: for a
flabby resolution of F', F' — .%°, the long exact sequence

0—>T(V,UF)—=T(V,F) —=T(U,F) —

HI(VQU,F)%HI(V,F)%
(4.44)
= W(V,U, F) —> W(V, F) —> i (U, F) —>

Hj+1(‘/, U, F) ...
is induced from the short exact sequence of complexes
0o—TITV,U,#*) —T(V,%°*) —=T(U, #*) ——=0. (445

Namely, HY(V, U, F) = H/(T'(V, U, .Z*)) and T'(V, U, -) is a left exact functor
from .7 to .«7. Thatis, H/(V, U, -) is the derived functor of I'(V, U, -) for j > 0.
Then for an exact sequence of sheaves

0 F’ F a 0 (4.46)

we get the long exact sequence of relative cohomologies

0 ‘>H0(V’ U, F’) ‘>HO(V, U, F) 9HO(V, U, F//) .
4.47)
- —H/(V,U F')—HI(V,U,F)—=HI (V,UF")—---
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Notice that for W D V D U in T we have the exact sequence

OHHO(VVaV;F)4>HO(VV7U7F)4>HO(V7U7F)4>
(4.48)
=W, V,F)—=HW,UF)—=H (V,UF)—---

generalizing (4.44). Furthermore, for a closed set C' in 1" satisfying C' C U,
the induced morphism from the restriction becomes the excision isomorphism

H/(T,U,F) = H/(T - C,U - C,F). (4.49)
For open sets U and U’ we also have the Mayer—Vietoris sequence:
HY(T,U, F)
0—HY(T,UuU,F)~ @ =H(T,UNnU,F)>---
HY(T,U’, F)
. (4.50)
H/(T,U, F)
- >=HI(T,UUU',F) > &) ~H(T,UNU,F)—~---
H/(T,U’, F)
Even more generally, for U C V and U’ C V', we have: for j > 0,
H/(V',U, F)
- —=H/(VUuV' UUUF) —_—
(VU F)

Wy AV, UnU F)—---

3.4.6 Spectral Sequences and Relative Hypercohomologies
Let F'* be a complex of sheaves. Namely,

jal R

is a sequence of sheaves and morphisms of (pre-) sheaves satisfying

ddodi~t =0, for j > 1.

4o

The sheaf version of the commutative diagram (3.33) becomes

Cot () s 5
| :
EHO(T,U,-) SHO(T,U,~) 4.51)
; ;

Cot (o) ~2E of
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where for a complex F** of sheaves in Cot(.7), HO(F*) is the associated 0-th
cohomology sheaf of F'*. Then we have

ker(HY(T,U, F°) — H(T, U, F')) = HY(T, U, 5 (F*)), (4.52)
which is
= {f €T(T,F) | pi(f) = 0,d°(f) = 0in T(T, F')} =
o (4.53)
= HYT, U, ker(F° < F)).

The commutativity of (4.51) means the equality of (4.52). The spectral se-
quences in Subsection 3.3.6 corresponding to the diagram (4.51) become

Eg’q = Hp((Hq(T7 Uv F]))]Zo)a or

4.54
EPY = HY(T, U, F?) (4>42)

and
’Eg’q =HP(T,U,HY(F*)) (4.54b)

abutting upon the relative hypercohomology H" (T, U, F'*) with coefficient in
the complex F'® of sheaves. Notice also that

dp—l,q qee
Ep—l,q 1 Ef’q 1 Ep+l,q

.. — HY(T, U, F*~') — HY(T, U, F?) — H9(T, U, FP*1) —>

Remarks 2.(1) For a given K € Ob(.7), if a complex F* is a cyclic res-
olution of K, i.e., H/(F*) = 0 for j > 1and K = ker(F° — F?),
from (4.54b) we have 'EY? = HP(T,U,H(F*)) = 0 for ¢ > 1 and
'EPY = HP(T,U, K). Consequently we get 'EY" ~ 'ER’ ~ EP, ie.,
HF (T, U, K) ~ HP(T, U, F*).

(2) If F* and G* are quasi-isomorphic, the isomorphism HI(F*) ~ H(G*)
induces the isomorphisms on the ' EY?-terms and the abutments

H"(T,U,F*)~ H"(T,U,G*).
(See Note 17 (2).)

(3) When HY(T, U, FP) = 0forq > 1, the spectral sequence in (4.54a) becomes
EY?T =HI(T,U, F?) = 0, ¢ > 1. Namely, we have

By’ = HP(E}") = HY(H(T,U, F*)).
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Therefore, the relative hypercohomology H™ (7', U, F'®), the abutment, is
isomorphic to
EY = HY(D(T, U, F*)).

In particular, when F'* € Ob(Co™(.7))is acyclic resolution of K satisfying
HY(T,U, FP) = 0 for ¢ > 1, then the induced morphism from E 0 to the
abutment is the natural isomorphism

H™(T,U, K) ~ H"(H"(T, U, F*)). (4.55)

For example, let 7" be a differentiable manifold and let 2%, be the complex
of the sheaves 2. of germs of p-forms on 7. Then the De Rham-Theorem
states that the cohomology of the complex I'(T,2%.) of global sections,
the abutment, and the cohomology with coefficient in the constant sheaf

R := ker(QY &L, Q1) are isomorphic, i.e.,
H™(D(T, Q%)) ~ H"(T, Q%) ~ H*(T, R). (4.56)

3.4.7 Leray Spectral Sequence

_Let f : T"'— S be a continuous map of topological spaces 1" and S and let
7 and . be the categories of sheaves over T and S, respectively. Then we
will define a functor

fi: T = (4.57)
as follows. For a sheaf F' over T', define
LEWV):=F(f71(V)) (4.58)

where V is an open set of S. Since f~(V N V') = f~YV)n f~L(V'), the
presheaf f.F'(V') defined by (4.58) becomes a sheaf, i.e., condition (Sheaf) in
Definition 5 in Chapter I is satisfied. Note that f, : T ~ .7 is a left exact
functor since T'(f~1(V), -) is left exact, i.e., (4.6). Therefore,

H(f7H(V), F) = D(f7H(V), F).

Then the derived functor H?(f~1(V'), F) is a presheaf over S. Define R7 f, F
as the associated sheaf to this presheaf:

Vo~ B (fHV), F). (4.59)

The notation R/ f,, the derived functor of f, is supported by the facts that
R f, ~ f, as functors and that for an injective sheaf Jg over S,

R f.J5 =0,
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ie, (R fJg)y =lim  H/(f1(V),Js) = 0. Consider the following com-
—yeV
mutative diagram:

X,

T

r(s,) (4.60)
F(Tv)

| <o~

\
>
o

where I'(S, f.F) = ['(f~1(S), F) = I'(T, F). Then for an injective sheaf Jr
over T' we have that f.Jp is a I'(S, -)-acyclic object of . (See Notes 17 (1).)
Namely, RIT(S,-)(f.Ir) = HI(f~1(S),Ir) = HYT,Ir) = 0 for ¢ > 1.
Therefore, from (3.26) we have the following spectral sequence of a composite

functor:
Eg’q = HP(S,RIf.F) 4.61)

abutting upon E" = H"(T, F'), n = p + ¢. This spectral sequence is said to
be the Leray spectral sequence induced by f : T' — S. The derived functor
RYf.F is said to be the higher direct image of the direct image f.F of F by
f. Furthermore, by considering f, as a functor from .7 to the category . of
presheaves over S, the diagram

N fe .
T S

HO(S,-) (4.62)

5

5
HO (T") §
v
o

implies the spectral sequence
EPY = HP(S, (R f)presh (F)) (4.63)

abutting upon H" (T, F). Similarly, for H(% ,-) : . ~~ < instead of HO(S, -)
we get
EPT =HP(% , (R f+)pre-sh (F)) (4.64)
with abutment H" (7', F), where % is a covering of S.
We will generalize (4.61) to the relative hypercohomology case. So, let
f T — S be a continuous map of topological spaces and let U and V' be

open sets of 7" and S, respectively. For F'* € Ob(Co™ (7)) let us consider the
presheaf over S defined by

W o~ HI(f~H W), fL (W) N U, F*). (4.65)
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LetR?f, s v (T, U, F*)be the associated sheaf to the presheaf defined by (4.65).
We have the following generalized Leray spectral sequence:

EPT=HP(S,V,Rif. sv(T,UF*)) (4.66)

abutting upon H* (T, f~1(V)U U, F'*). This spectral sequence is said to be the
second Leray spectral sequence of relative hypercohomology. See the following
diagram for (4.66):

ROf*,S,V(Tva) >
I N T N

Cot(T) Cot(.#)

PN

LS.V (4.67)

’

B <

See S. Lubkin and G. Kato, Second Leray spectral sequence of relative hyper-
cohomology, Proc. Nat. Acad. Sci. U.S.A 75 (1978), no 10, 4666—4667.

3.5 Higher Derived Functors of lim

—

In Section 1.8 we defined an inverse limit of a covariant functor F' : €’ ~~ €,

i.e., F € Ob(€*"). In this Section we consider the case ¢’ = Z, where i 2, J
fori > jin Z. Thenin € for F € Ob(‘ﬁz), we have F'i — F'j, which will be

written as [ 9, Fiin this Section. First of all, let ¢’ be an abelian category.
In what will follow we will define the derived functor of the inverse limit lim

—

which is a functor from €% to €.
Secondly, assume that the direct product [ [,_, F* exists in ¢ where

H:%ZW%

is a functor. Using an exact embedding in Subsection 1.6.1; (a;) € [];cy, F*
belongs to lim F* if a; = F¢(a;) for all i 2, j. (See Section 1.8).

Now we compute the derived functor R lim of

lim : 6% ~ € (5.1)
by constructing a complex

CQ:COLO)CJL...
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so that HO(C*®) = ker d° = lim F*. Consequently we get

H/(C*) = RZH%(C®) = R/ lim F". (5.2)

Here is a construction of C*: for F' = (F?) € Ob(%¢%) define

0= [Liez F
Cl =[l;en F (5.3)
Cl=0, forj=23,...,

where d° : €9 — C! is defined by

in the diagram

miod’ = Fponitt — 7t (5.4)
0 CO d° Cl dt 0 c.
m‘+1l \rli (5.5)
Fi-l—l Fz C.

and 7 being the projection, i.e., 7((a;)) = a;. Namely, for (a;) € C°

d%((@) = (d¥(a))) = (F(ain1) — @) € O = [ F".

Then we get

Next,

and

€L

HY(C*) = kerd® = {(a;) € C°| d%a;) = (0;)} =

_ . 0 . — 4. —
= {(a) 6 Cc” | F¢(az+1') =ai} = (5.6)
=limF' c ' =[] F".
o iz
Hl Co [ RlHO(CO) — Rl lim Fi
5.7)
ker dl/ imd’ =—= C’l/imd0 —— coker d°,

H/(C*) =R/ lim F' =0, forj > 2. (5.8)
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We often write lim¥) or lim? for the higher derived functors R/ lim of lim from

€L to €.
Furthermore, let us assume that the functor

H R R
is exact. Then, for a short exact exact sequence in €7

0 /F F //F 0’

namely

0 (/Fz) (FZ) (//Fi) 0,

we get the exact sequence

0 H /Fz’ H Fi H //Fi > ()
def def def (5.9
O /C. C. //O. 0

in €. Following (5.4) we have the induced diagram

0 0 0
’qt d?! ”ql
0 1ol oL nel 0 (5.10)
/dO dO //dO
0 /CO CO //CO 0
0 0 0
Then from (5.10) we have the following exact sequence
0—ker'd’ —=kerd’ — = ker"d’ —
(5.11)

— coker’dY — coker d° — coker”’d? — 0.
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Note that the above assertion, i.e., (5.10) implies (5.11), is referred to as the
Snake Lemma. That is, (5.11) becomes the exact sequence
0— > lim’F?

lim F* lim” F*

(5.12)

— limWF limM F limW R

— — —

indicating the left exactness of lim and the right exactness of lim(.

—

3.5.1 Cohomology and Inverse Limit

An inverse system from Z to € is a covariant functor /' from 7Z to an abelian
category ¢ as in Section 3.5, i.e., I € Ob(%%). In this section we consider the
case where % is replaced by the category Co™ (%¢’) of complexes of ¢’. Namely,
for each 7 € Z, F? is a complex satisfying:

E? —7 F]-’7 forall i —- JinZ, (5.13)
and for each i € Z,
drt dar artt
e . 1 7 1 7
P;""HEP*)EP—F _to .. (5.14)

satisfies d o d? = 0 for all p > 0. That is, we are considering an object of
the category Co™ (%)%.

Let us considering the following first quadrant double complex with only
first and second non-zero rows:

0 0 0 0
dt d! d!
49 d! d?
0TS e Ga9)
d° d0 d0
[1d? [1d} I1d7
0 HFZ‘O HFil HFip HFfHH'”
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where

(T @) = (. ,a¥,ab,y,...) =
= (...,d0(a}),d?, (b)), ...) = [J(@P(a})) e [T EFH

Let D** be the double complex in (5.15), i.e., D** = (DP9), ;~o, DP4 =0
unless p > 0 and ¢ = 0,1. Then from (3.9) and (3.24), we have the spectral
sequences induced by two different filtrations

E} = HP, (HI(D**)) = B (limV F})

- Pirid (e ) (; o e (5.16)
E, :HT(H_>(D *)) :{El (HY(F?))

abutting upon E" = H"(D®) where D" = P, ,_,, D"? as in (3.2). Letus

study {E2'} and { ELYY in detail. (Note E29 = 0 for ¢ # 0,1.) We have the
following spectral sequence diagram with slope —%:

’ \
0 Eg—2,1 Eg—l,l Ep,l
dg—Q 1 dp—l 1 dg 1
(5.17)
B0 TR T Q* ’

Then from (5.17), Ef 0 can be computed as
BY? = B /imdy >,
and E§’0 ~ Eff’o ~ EPC. We get

p_2a1
E2

dg—Q,l
(5.18)

By " PO ~ R pp.

From (5.17), the cohomology EX~ "' at EX ™" is just kerd5 "', Then we
have Eg_l’l ~~ 5—1,1 ~ ...~ EP 1! Since the abutment

gD+l _ ppr — Eggl’l @E&O
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we get
™ _ _ _ L —
B —> B ~ BV = kerdy M= RN

Consequently, we obtain

(5.19)

~

HP(imF?) » pr >~ HP~ (limWEe) ~ . ..

Next, we will study 'EY? of (5.16). The non-zero terms of ' E5'? are the first
two columns {'ES?} and {' Ey?}. From the spectral sequence {' E5"?} diagram
like the one (5.15) for { "'}, we have 0 = 'E, 7 — "By /B2 =
which implies

rpla—1 ~/pla-tc it 1,g—1 0,
By m e mEY E1="E ' &' EY.
.. 1 10,q 1 10,q T2 q .
Similarly, "Ey™ ~ "Eo' «+— E. That is, we get

L2 ™2

1,q—1
/E2»q E4 /Equ

0

(5.20)

0 — limW(HY(F?)) — po — > im(HI(F?)) ¢

In (5.19), if
By = w2 (limWES) = 0

and
gy =mr (imME?) =0,

then we have the isomorphism from the abutment E? to E2” = HP(lim F*).

In (5.20), if /By~ = lim(D (HI~1(F®)) = 0, then we get
E? 2 limHY(F?) =By,
Consequently, we would get the commutativity of H* and lim, i.e.,

HP(lim F* = lim HP(F?). (5.21)
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3.5.2  Vanishing of lim™" F;
Let us recall: for F € €%, i.e., an inverse system (F;);cz, the first cohomol-
ogy
H'(C*) = R'H(C*) ~ R lim F; = lim(V F,

of the complex
dO dl
CO_HZ’EZF@'HCI =Lz B —>0—>

is the cokernel coker d0 ~ [1F:/ im'do. Recall also that do :C0 = Cis
defined as d°((a?)) = Fo(a'™!) —a' € C' =[] F; for (a') € CY =[] Fi,
where 7 + 1 2, tand Fjq Fe, F;. We let ¢§+1 = F'¢ in what follows. For an
arbitrary (z;) € C*, we ask whether there is (a;) € CV to satisfy the following
system d°((a;)) = (x;) of equations:

¢p(a1) — ap = o, ie, @(a1) =0+ ag
¢i(ag) —ar = z1, ie, ¢%(az) =21+

L S (5.22)
o N ait) —ai = x4, ie, ¢ (aiy1) =z + a

\

When (bﬁ“ : F;41 — Fjis an epimorphism for: = 0,1, 2, .. ., it follows from
(5.22) that one can find (a;) € C© satisfying d°((a;)) = (x;) € C'. Then
d": C° — O is an epimorphism. That is, limM F; = coker d® = 0.

More generally, for the inverse system F' = (F}) € Ob(%%)

i+1 i 2 1
Fitq & F,——=F_, L Fy % Fy (5.23)

when the sequence im ¢} D im ¢2 O - - - becomes stationary, where
, S .
$o = ¢poPio- 0Py,
i.e., there exists 7o € Z to satisfy

im ¢ =img¢?,  forall j > ip, (5.24)
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then d” : C° — C' is epimorphic. This is because for a given (x;) € C, one
can choose (a;) € C? as follows:

(a0 = — (w0 + ¢g(x1) + Bf(w2) + - - + & (wiy))
a1 = —(z1 + ¢f(x2) + ¢f(23) + - + ¢ (24))
ag = —(2 + ¢ (23) + d3(wa) + - - + ¢ (3))
: (5.25)
tig—1 = —(Tig—1 + & (wiy))
aio = _m’io
a; =0, for i>1i+1
Then
d°((a;)) = (¢p(a1) — ao, ¢5(az) — a1, ¢3(az) — as,...) =
= (= ¢o(1) — o(wa) — -+ — O (ip)+

+ @p(x1) + df(32) + -+ + O (i) + T0, - - -,

o . o _
— B _o(Tig—1) — Gi0 _o(Tio) + G0 _a(Tig—1) + B _o(Tig) + Tig—2,
- ¢23_1($z’o) + Qbig(x%o) + Tig—1, Tig - - ) =

= (20, &1, ., Tig—1s Tig> Tig1s - - - ) = (T5)-

Note that for the inverse system (£}, qﬁz) the condition in (5.24) is said to be the
Mittag-Leffler condition for (F;) € Ob(%¢%) at Fy. Furthermore, if (HI"1F?)
satisfies the Mittag-Leffler condition, we have lim(l)Hq_lFi' = 0. Then we

—

obtain the isomorphism in (5.21).
Let us re-write the spectral sequences in (5.16) induced by the double com-
plex (5.15) as

EpY = HP(lim(® F?) = RPHO(R? lim F7)

(5.26)
"D = lim® (HYE?) = RP lim(R7H° (F?)).
We can consider
lim
Co™t (Cg)Z Co™ ((g)
KO (5.27)

=
=)

SPUU
(=
5

R e
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Then the spectral sequences in (5.26) abut upon the total cohomology
H"(D*) = R"K"((F}))

where D*® is the complex associated with the double complex (5.15). (See
Section 3.3.) Note also that the cohomology functor H? commutes with the left
exact functor lim = H%., the cohomology of the complex constructed as C'*®

in (5.5).



Chapter 4

DERIVED CATEGORIES

4.1 Defining Derived Categories
4.1.1 Concepts Leading to Derived Categories

Let <7 be an abelian category and let Co™ (.7) be the category of bounded
from below complexes as before. Then as in Section 2.2 we can define the
cohomology functor H/ : Co™ (&) ~» & for j € Z*. For a morphism

[ (A%, dY) — (B®,dp)

of complexes in Co™ (&7) we have H/(f*) : H/(A®*) — H/(B®) in &/. In
Section 2.3 we found that for homotopic morphisms f°® and ¢° from A°® to
B* their induced morphisms H7 (f*) and H7(¢®) are the same morphism from
H/(A®) to H/(B®). That is, as the functor H’ from the homotopy category
K+ (/) = Co™(&7)/ ~ as defined in Section 2.3, H/([f*]) is independent of
the choice of representative f°.

Next, let @7 and % be abelian categories and let F' : .o/ ~~ 28 be an additive
left exact functor. The question to ask is whether the assignment from f*° to
F f* is a functor from K* (/) to K* (%) or not. The answer is positive: we
need to prove the implication

f. NQ':}Ff.NFg.
For the additive functor F' we get
F(fl —g)Y=Ffl —F¢/ = F(d ) o Fs/ + Fs’™ o Fd/,

where s/ : A7 — BJ/~! are homotopy morphisms as in (3.2) in Chapter II.
Namely, F'f* is homotopic to F'g°.

A morphism f® : A®* — ' A®of complexes is said to be a quasi-isomorphism
when the induced morphism H/ (f*®) : H/(A®) — H/(’A®) is an isomorphism

117
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in &7 for each j. Let us recall the diagram (3.33) in Subsection 3.3.6 in Chapter
I1I:

Cot (o) ~LLE o Cot ()
5 ) §
g HO F g HO (1.1)
2 2
/ N
of B,

The image of a morphism f® : A* — B*®in Co™ (/) under the functor Co™ F’
in the above diagram is F f* : FA®* — FB*®in Cot (%), i.e.,

A FA®
lf‘ SIE, iFf’ (1.2)
B* FB*

Then we get the morphism between the associated spectral sequences as in
(3.40) in Chapter III with hypercohomologies:

EPY(A®) = RIF AP EPYA®) =HP(--- - RIFAP — .. .)
N
EVY(B®) = RIFB? EPY(B®)=HP(--- - RIFBP — ---)
and the other one
'E}I(A%) = RPF(HI(A®))
‘/ (1.3)
'EYY(B®) = RPF(HY(B*)).
We also have the morphism
E"(A®) = R"FA®* —— E"(B*) = R"FB* (1.4)

between the abutments. Notice that for a quasi-isomorphism f® : A®* — B°,
the morphism between ' EYY(A®) and ' EY?(B*®) in (1.3) becomes an isomor-
phism. Then the morphism of the abutments in (1.4) is an isomorphism. Also
note that the abutment E™(A®) = R"F(A®) in (1.4) is not simply the coho-
mology H"(F A®) of the complex F'A® as an object of Co'(%). However, if
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EPY(A®) = RIFAP =0 for g > 1 (i.e., AP is an F-acyclic object, or A” is an
injective object), we would have
E3(A%) = H'(E}") = H'(FA®) ~ E"(4%),

the abutment. Namely, we are preparing to define a new category where a quasi-
isomorphism is invertible (i.e, an isomorphism), and a homotopy equivalence
class of morphisms matters. Such a category is said to be a derived category of
o

4.1.2  Definition of Derived Category

Let o/ be an abelian category. We constructed K(.27) from the abelian
category Co(.«7) of complexes, where

Homg /) (A%, B*) = Homco(.)(A®, B®) /(homotopy equivalence). (1.5)

The derived category D(.<7) is defined by the category obtained by localizing
K(«) at the set (QIS) of quasi-isomorphisms:

D(d) = K(d)(QIS)- (16)

Namely, there is a functor Q. : K(&/) ~» D(7) such that Q, assigns quasi-
isomorphisms in K(.7) toisomorphismsin D(.<7). Then Q. : K(&7) ~» D(&7)
satisfies the universal property as follows: if ' : K(.&/) ~» & assigns quasi-
isomorphisms of K(.¢7) to isomorphisms of Z then there is a unique functor
G : D() ~~ 9 satisfying the commutativity F' = G o Q. in the diagram

1.7
Q\;\ % (1.7)

The functor Q. : K(«7) ~» D(«7) is said to be a localizing functor. The above
D(«7) can also be written as

D(«) := K(«)[(QIS)""].

We will list properties that (QIS) satisfies:

QIS.1 If s® and t® are quasi-isomorphisms, the composition s®ot*® is also a quasi-
isomorphism.

QIS.2 For a diagram
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in K(«7), where s*® is a quasi-isomorphism, there exists a morphism’ f® and
a quasi-isomorphism ’s® satisfying the commutativity f® o’s® = s® o’ f*®
of the diagram

/A. f Bo
A—L ipe

QIS.3 For two morphisms f*® and g® from A® to ' B®, the following (qis.3.1)
and (qis.3.2) are equivalent:

(qis.3.1) For a quasi-isomorphism s® : 'B®* — B®, we have s® o f® = 5° o0 ¢°.

(gis.3.2) For a quasi-isomorphism ¢* : “A®* — A®, we have f® o t® = ¢® o t°.

Since the derived category D(.o7) is the localized category of K(.<7) at (QIS),
objects of D(.o7) are those of K(.27) (hence of Co(<7)). Namely, an object of
D(</) is a complex. On the other hand, a morphism ¢ from A® to B® in
D(<7) is an equivalence class of a pair (f*, s*) of a morphism f* and a quasi-
isomorphism s° given as in the diagram:

o

Ao > /Bo
\ Ts. (1.8)
o
B.

for an object 'B®. The equivalence relation between such pairs (f*,s®) and
(g°,t°) is defined as follows. That is, for (f*, s®) and (¢°,¢°®) given as

g° s®
JN % (1.9)

/B. //B.,

(f®,s®) is equivalent to (¢°,t*), written as (f°®,s®) ~ (g¢°,t*), if and only
if there are quasi-isomorphisms h® : 'B®* — ""B® and u®* : "B* — "'B*®
satisfying the commutativity of the diagram

A B*
g° s®
f. t.
/Bo //Bo (1 . 1 0)
N /
N /
he \\\ /’/ u®



Defining Derived Categories 121

for an object ” B® of D(«). When we write the localization of K(.«7) at (QIS)
like the localization of the ring Z of integers at (Z — {0}), we have

ﬂ_h.of._u.og._g.

= = ==. 1.11
S. h. o 8. u. o) t. t. ( )
That is, using the direct limit we have
A* B*
Homp ) (A®, B*) = { lim \ / : (1.12)
— -1
/B. /B. q

where "q-i" means quasi-isomorphism. Let us write the equivalence class ¢ of
(f®,s*) by f*/s®. Then we will define the composition of morphisms in the
derived category as follows. Let ¢ = f®/s® and ¢ = ¢*/t* be morphisms of
D(«7) given as

A. f. S /Bo_ /g. >//C.

B i (1.13)
N
ce.

Then by QIS.2 in the above, there are ¢g® : 'B®* — "C® and’s® : 'C* — "C*® as
shown in (1.13) where ’s® is a quasi-isomorphism. We define the composition
Yog¢p:A®* — C®in D() by

Yop:=(g"of)/(s*ct®). (1.14)

The reader may be interested in showing the independence of the choice of
representatives (f°, s®) and (g°,t*) for the composition defined in (1.14), i.e.,
the well-definedness.

Next, we will define an addition B in Homp,)(A®, B®). Let f*/s® and
'f*/'s* be elements of Homp/y(A®, B*). Then from

Ao f>/Bo Ao f;//Bo

- o (1.15)

B* B*
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we extract

L]
,B°_:>/”B'
A

B ! (1.16)

Bo A l/é.‘

Then by QIS.2 we can complete the square in (1.16) by quasi-isomorphisms r*
and 'r®. Define f*/s* B'f®/'s* by
f./S. H /fo/lso - (T‘. o f. + /T‘. ° /f.)/t., (117)

/

where t* = 7° 0 s* = 'r® o ’s®. Namely, the addition in (1.15) equals

A. r'of'+’r'o’f° ,//B.

Tt‘:r’os’:’r‘o/s‘ (1.18)

B.

4.2  Derived Categorical Derived Functors

Let I : &/ ~~ 28 be a additive left exact functor of abelian categories <7 and
AB. Let A®* € Ob(DH(«)), i.e., A® is a complex satisfying A7 = 0 for j < 0.
Then consider a Cartan—Eilenberg resolution of A® as in Subsection 3.3.3:

IO,l Il,l oo Ip,l
2.1)
IO’O I1,0 e Ip,O
0 el P
AO d° Al d . AP dr

Namely, all the 179, p, ¢ > 0 are injective objects of .7 satisfying H% (IP*) =0,

g > 1and H?(Ip") = AP (ie., AP <, [P*isan injective resolution of AP).
We associate the spectral sequence

EPY=Hi(I"*) =0, =1 (2.2)
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to the double complex I** = (IP9), c7+. (See Section 3.3.) We have the
slope zero E; _term sequence

d(l),o ql0 420
1 1 2 1
E?vo E170 E170
(2.3)
0 1 2
40— g1 s g2

Therefore, Eg’o = HP(E] Y) = HP(A®) holds. Since we have

0=FEy>" - BY0 — EY T =,

~
~

we get B2 ~ EL =, EP. The abutment EP is the total cohomology HP(1*)
of the single complex I°® where [ = G}p +q=n 177 of the double complex I*°.
That is, we obtain a complex /°® consisting of injective objects /™, n > 0, which
is quasi-isomorphic to A°, i.e.,

ERO = HP(A®) 5 HP(I®) = EP.

For an additive left exact functor F from o7 to % we can give the definition
of the derived functor RF from DT (&) to D*(48) as we did in Section 2.7 in
Chapter Il as follows. Let I® be an injective complex which is quasi-isomorphic
to A* € Ob(D*(«7)). Define the derived functor RFA® of A® by FI* €
Ob(D*(#)), i.e.,

RFA® :=FI°. (2.4)

Define also

RIFA® .= H/(FI*). (2.5)

Note that for an injective object I” we have EY"Y = RIFIP = 0,q > 1. Thenthe
abutment R/ F'A®, the hyperderived functor, is isomorphic to the cohomology
HY (EI’O) = H/(RFI®) = H’(FI®). Therefore, the right hand-side of (2.5)
is isomorphic to the hyperderived functor, i.e.,

RIFA® = RIFA°. (2.6)

Let us observe that for the additive left exact functor ' : &/ ~~ %, a
quasi-isomorphism A® 2 I* is assigned to FA® I Fre. By taking the

cohomology the induced morphism becomes H’(F A®) B, HI(FI°*).
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Namely, for the quasi-isomorphism A® =%, I* we have the following diagram

F's®

FA° RFA® :=FI°®
o
A M , L
J L ° °
HI(FA®) B RIFA R/ JJA 2.7
HI(FI°).

Let us re-write the above diagram for the case of an injective resolution A = I*
of a single object A € Ob(&/):

FA Fe

RFA :=FI*
HI

H/(FA) B H/(FI°): RIFA (2.8)

)

S~

<.

R/ FA.

The right hand-side of the lower part of the above diagram (2.8) indicates that
the derived functor, as defined in Chapter II, coincides with the notion of the
derived functor in the sense of the derived category. Since the left hand-side
of the lower part of (2.8) is the cohomology of the single object F'A we have
H/(FA) =0forj > 1and H'(FA) ~ FA.

Next we will confirm that two quasi-isomorphisms s® and r°® from A°® to two
injective complexes

---"-- - K*
A
|
5 g0 : (2.9)
|
r® I
A° J*®

provide the isomorphic objects F'1® and F'J® in D™ (%). By QIS.2 in Subsec-
tion 4.1.2 (whose proof is not given here), we can complete the square as in
(2.9) by quasi-isomorphisms 's® and 'r® where the complex K*® is the direct
sum of /°® and J*°. Then the functor F' takes the commutative diagram (2.9) to
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the following commutative diagram

FI° FK*
Fs® F's® (2.10)
FA*— " e
whose cohomologies are
i (pro) — 2 i (p ey
HY (Fs®) 1Y (F/s®) (2.11)
I (FA%) — 2 e,

The first row of (2.11) is H/(FI*) = RIFI® — HI(FK*) = RIFK*® (as
shown in Subsection 4.1.2) since E"Y(1®) = RYFIP = (0 and

EPY(K*) = RIFKP =0

for ¢ > 1. On the other hand, for the quasi-isomorphism 'r® : I®* — K?*, the
isomorphism between the ' E5*Y-terms

'EY(I*) = RPF(HY(I%)) = 'EY(K*) = RPF(H!(K*))
induces the isomorphism between abutments
EV(I*°) =RIFI*

and E/(K*) = R/FK®. Consequently the morphism F'r® : FI®* — FK*
(and similarly, F's® : F'J®* — FK*®) is a quasi-isomorphism. (See Subsection
4.1.1 for the above argument.) Therefore, we get the isomorphism between
H/(FI*) and H/(FJ*). Hence, the definition of RF A® in (2.4) is independent
of the choice of quasi-isomorphism from A® to an injective complex /°. Note
also that H/ (F's®) and H? (F'r®) need not be isomorphisms for j > 1.
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The process from Co(¢7) to D(.7) through K(.27) is and from F' : &7 ~» A
to RE' : D(&7) ~» D(47) are summarized in the following diagram:

D(&) ~~~E s D(B)

o} o)

K(&) s K(2)

qd§ q@§ (2.12)
Co() ~~E s Co(2)
) )
incl. ) ¢ H incl. ? HO
i @
JZ{ %7

where ¢ is defined by (1.5). Namely, for go f ~ 1 we have [go f] = [1], i.e.,
[9] o [f] = 1in K(«7). The functor Q, assign a quasi-isomorphism in K(.)
to an isomorphism in D(.e7'). That is, for objects A® and B*® in K(.<7') consider

A* B*
q-i|re | q-i | ¢ (2.13)
I. J.

in K(«7) where g-i is a quasi-isomorphism, and /°® and J* are injective com-
plexes as in Section 4.2. Then the functor QQ ., assigns the morphism to

o=1*/te
. | Qe (2.14)

I.

in D(«7) where all the quasi-isomorphisms become isomorphism. Note that
in D(.«7) we can have the morphism Q. f® o (Q.7®)~! : I* — J*. Finally



Derived Categorical Derived Functors
RF : D(4) ~~ D(%) takes the diagram (2.14) to

RF¢

RFA® RFB*®
RFT® REJ®
Fre rJje

where in D(#) we can define RF¢ : RFA®* — RF B® by

127

2.15)

F(Quf* o (Qut)™h) = F(Quf*) o F((Qut*) ™) = Ff*/Ft".

As an application of the concept of a derived category, we consider the case
of a composite functor as in Subsection 3.3.2. Namely, let I be a left exact
additive functor of abelian categories .7 and # with enough injectives and let
G : # ~~ ¢ also be aleft exact functor to the abelian category . Furthermore,
assume that the image object F'I in % of an injective object [ of &7 is G-acyclic,

i.e., R7G(FI) = 0for j > 1. As in Subsection 3.3.2, for the diagram

o L B
:
o
GoF §
v
¢

we have the commutative diagram for the 0-th derived functors

0
o~ 2
;
§R0G
RO(GoF) §
v
v,

(2.16)

ie, R(GoF)~ GoF ~ RGoRYF. The concept of a derived category
enables this commutativity even for higher cohomologies. That is, we have
the commutative diagram of the derived categories associated with the above
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(2.16):
D* (&) ~~~ s D)
:
(RG 2.17)
R(GoF) 5
v
D*(%),
i.e, we have
R(G o F) =RG o RF. (2.18)

We will prove (2.18) as follows. For an object A® of DT (&), let I® be an
injective complex which is quasi-isomorphic to A®. By the definition of the
derived functor RF'A® of F, we have RFA® = FI°. Next we will compute
RG(FI*) as follows. The cohomology R’ G(FI*®) of the complex RG(FI*®) in
DT (%) is the hyperderived functor R“G(FI*). One of the spectral sequences
having the hyperderived functor R/G (FI*) as the abutment is

EPY = RIG(FIP) (2.19)

asin (3.43). By the G-acyclicity assumption on F'I? we have E"? = Oforqg > 1
where EP? = ROG(FI?) ~ G(FI?). The spectral sequence of E"/-terms
with slope zero becomes

EP—LO E11770 EZH‘LO . ...

— (Go F)I""! — (G o F)IP — (G o F)I"*! —

(2.20)

Then EZ? = HP((G o F)I*) satistying B} ~ EL’ ~ EP = RPG(FI®).
Summarizing the above we get

Eg’o —RP(Go F)A® :=

= HP((G o F)I*) ~
~ EP = RPG(FI®) =
= RPG(FI®).

Namely, the two complexes R(G o F')A® and RG(FI°®) = RG(RFA®) are
quasi-isomorphic. Therefore, as objects in D" (%) we have

R(G o F)A* ~ RG(RFA®).
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4.3 Triangles

Let <7 be an abelian category. We will define an autofunctor [n] on the
category Co(.«7) of complexes as follows:

[n] : Co() ~ Co(&) (3.1
is defined by [n]A® := A**" and [n]d%. := (—1)"d%t" for
(A*,d%.) € Ob(Co(&)).

We usually write A[n]® and d s [n]* for [n] A® and [n]d?. respectively. Namely,
A[n} = AT and dae[n)? = (—1)"d’.". For example, for [1] : Co(&/) ~
Co(«7) a morphism f*® : A* — B*® in Co(«7), i.e., more explicitly

d’,,
AJ A ——
lfﬂ' _ ifjﬂ
j i +1 -
B] BJ s
[1]f* = f[1]® : A[1]* — BJ[1]® becomes
. —d/3! ,
AJtl A2 —— -
lfj+l J/fj+2
,djtl
B+l B Bit2 — ...

Let f*: A* — B®and ¢° : B®* — C° be two morphisms of complexes
in K(<7). Then we have A® I B* % C*. When there is a morphism
he . C* — A[1]* in K(&),

A° B ce A[1]° (3.2)

is said to be a triangle in K(.o7'). We sometimes write such a triangle (3.2) as

L] h. L]
A =————cC
\ / (3.3)
fe g°
B.

A morphism of triangles is (a®, 5°,7°, a[1]®) of the commutative diagram of
the top and bottom triangles of

A® f* B g° C* h* A[l]

ia. \Lﬁ. L,Y. \L []e (3.4)
' fe /@ /e .

I A® ' Be® 9 /C. h /A[]_]
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in K(.«7). When a®, 3° and ~* are isomorphisms of K(.<7), triangles

A® B* c* AlL)e

and

IAo /B. /C. /A[l]O

are said to be isomorphic triangles.
For an arbitrarily given morphism f® : A®* — B® of complexes, we can
construct a complex C’J‘c. and morphisms b°® and a°® so that

A* B = Ch 2 An) (3.5)

may become a triangle. Define the complex C]’c. by
Cho =A@ B = Al @ B (3.6)

and d]é. : C}. — C}Tl by

(" )= ) ()=

_< @) -)ecj.“
f]+1($]+1) +d59.(y]) f

(3.7)

Then we have

L 2t
o ()

2 o AT (241
<fj+2(—df;+.1(xj+1)) + e (@) + A () ))) -

_ (0 J+2
= <O> € Cre

from the commutativity of the diagram

d’ye s
co—s p — 25 g 2 g2

9 fitl fit2 (3.8)
d’. it

c—— RJ B BI+1 B BI+2

Namely, (C%., d¢.) isacomplex. For Cf, = A[1]*®B* defineb® : B® — C1}.
and a® : Cf. — A[1]* in (3.5) by b* := [1(};.] and a® := [14+[1]*,0°]. Then
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(3.5) becomes a triangle. Notice that 0 — B®* — Cf. — A[l]* — 0is an
exact sequence in Co(.27). A triangle A®* — B®* — C* — A[1]* is said to be a
/f.

distinguished triangle when for a morphism 'A®* —— ’B® of complexes there

is an isomorphism of triangles

fe g°

A® B* All]®
lz l% l lz (3.9)
I A® f 'Be® b C’.f' ‘a® /A[l

in K(«7).

The complex C]'c. in (3.5) is said to be the mapping cone of f°® : A®* — B°.
Notice that Cj'c. depends upon a homotopy equivalence class. Namely, if we
have f§ ~ f35 then there is an isomorphism C.f ~ 122. in K(7). For f* :
A* — B°*, we will define another complex ’ C'%. so that the associated triangles

' . be .
Cf. “

(3.10)
. L® /Cf. s Cf. a®
become isomorphic triangles. Define the complex by
/C;. = A*® A[1]* @ B®, (3.11)
where d7. @/ C}. —/ C}Tl is defined as
& —1 0 x &y (27) —':cj“
0 daef1f 0 | [27]| = — (a7t . (12
0 flU* di) \ ¥ FIHH @I — dpe(y)

Then by the commutative diagram (3.8) we have dféf. o dfc. = 0 obtaining
the complex ’ C}'c. which is said to be the mapping cylinder of f® : A®* — B°.
Morphisms ¢, 7 and 'b® in (3.11) are given by

1° . 0
co=lol, =00 Ol and =0, (3.13)
0 0 1 o
0 1
Define ‘a® : 'C}. — B*® by
)
‘ol | @It = (a7 o

)
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Then we have 'a® o 'b® = 1p+. Notice, however, that 'b® o 'a® is not 1/0;. , but

homotopic to 1(;]-", ie.,’b®o’a® ~ 10;.. That is, by defining
8. : /C}. — IC}. [_1]

in the diagram

lcj—l lcj ‘ce Cj-i‘l
fe re fe
st ) )
j NEYY
1JC;. blo'a g
1g—1 1] 1J+1
Croo—5 —Cp Che
/Ol
. :r:j 0
as s’ (zﬂ'fl) = (xj >, we get
v 0
170. Iy o/ak —gtlg d?‘C' + d?g.l o Sj,
f.

i.e.,’b’ o’a’ is homotopic to Lics, . The cohomology
Hj(/bo o Iao) = H](/bo) o Hj(/ao) — HJ(l’C;.) = 1Hj(’C;.)
implies that the quasi-isomorphisms 'a® and 'b*® are isomorphisms in D(.<7).

Summarizing the above computation: for a morphism f® : A®* — B® in
Co(7) we have the commutative diagram

b® . a® .
0 B* Ce All)* —o0
llbo
0 A ® /C].c. w° C}. 0 (3.14)

|

A. > B.
satisfying 'a® o 'b* = 1ge and 'b® o 'a® ~ lgs,. In D(«7), 'a® and 'b® are

isomorphisms between B® and ’ Ce.

4.4 Triangles for Exact Sequences

For a short exact sequence

0 /Ao Ao //Ao 0 (4 1)
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in the category Co™ (&) of complexes of an abelian category <7, through the
connecting morphisms &7 : H/(”A®) — H/T1('A®), j > 0, we get the long
exact sequence on cohomology

0
0 ~ HO('A*) ~ HO(A*) ~ HO(" A®) 0 H!('A%)
Our next topic is the long exact sequence associated with a distinguished triangle
of D(«7). By the deﬁnition such a triangle is isomorphic to a triangle in D (<)
of the form A' EAN B‘ r — CF. <, A[1]®. Furthermore, it is isomorphic to a
triangle A® ’CJ:. — C]'c. “, A[1]® as is shown in Section 4.3. In K(«7),
such a distinguished triangle is quasi-isomorphic to A°® Ny, C]’c. -, C]’c. 2

AlL]°.
Extract the following split short exact sequence from (3.14)

0 A* .° IC}. ® C}. 0 (42)
in Co(/). Then in </ we obtain the long exact sequence

(4.3)

487; Hj+1(A0) HI () ...

where &/ : H/(C%.) — H/*!(A®) is the connecting morphism as defined in
(8.9) in Chapter II. Then we will prove

o =H(a*) (4.4)

where a® : Cf, — A[1]* is in the triangle A* — 'C%. — C%, o, A[1]°.
Recall that the deﬁmtlon of the connecting morphism d7is 9 (eI cJ) =i+ asin

(8.9) in Chapter II, where ¢/ € ker d’., C C’J. and’c/t! € ker d]Jrl ATFL
Note that

Ao (") = dl. <x;j1> <fj+1(ﬁil)(f;l) (yj)> N (8>

as in (3.7). Namely,

@ity =0
{f?“(wl) + () = 0. -
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On the other hand, recall that 'c/+! in 87 ("c7) = 'ci+1 satisfies

i+l
T = 0 = d/ ().
0

Those ¢/ and "¢’ are related as

By Definition (3.12) of 7.,

- . 2J &, (27) — 27!
dpa(dd) = dpe | 27T | = — & (a7t . (46)
v FH @I 4 dpe(y)

From (4.5), the second and third rows are zero. In order to have

It i
0 = d?C. It
0 yJ

we must have ¢/t = di‘. (27) — 2771, i.e., the first row of (4.6). Conse-
quently, we get

F(ch) =it = i+l — &), (ad) =

That is, a distinguished triangle induces the long exact sequence of cohomolo-
gies.
As we saw, a distinguished triangle is isomorphic to

A 5o o oA,

For the short exact sequence (4.2) in Co(), we have the long exact sequence

(4.3). Let0 — A® g L C*® — 0 be an arbitrary short exact sequence of
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complexes in Co(«7). We need quasi-isomorphisms’g® and h* in the following
diagram.

T “4.7)
A /Co ° Co a®

Define’g® : Cf. = A[1]*®B* — C*in(4.7)by ¢’ (27T, 47) = ¢/ (3). Then
define h® : C* — A[1]* to satisfy h® o’g® = a® in (4.7). Note that since is ¢g*
is epimorphic, for 2/ € €7, there is 4/ € B to satisfy h7(27) = h'(g(y?)).
By the above definition of 'g® we get

W) =h(g@y)) =W (¢ @t y)) = d (a7, y7) = 27t

From the distinguished triangle A® LNy Ct. =, Ct. “, A[1]® we obtain the
long exact sequence in (4.3). We still need to prove that 'g® : C']’c. — C®%isa
quasi-isomorphism; then we can replace the long exact sequence (4.3) by the
long exact sequence

< ——=HI(A®) —=H/(B*) —=H/(C®*) —=HI 1 (A*) —— - -

associated with 0 — A®* — B®* — (C* — 0. (We have already proved that
a® ' C" — B?* is a quasi-isomorphism in (4.3).) As we noted in the above,
'g*: OF To — C* is epimorphic. For the short exact sequence

/e

0 —ker’g® C3e s e 0 (4.8)

in Co(«7), we get the corresponding long exact sequence
- —=HJ(ker'g®) — HJ(Cf.) — HJ(C*) — H/ ! (ker'g®) —

We need to prove H’(ker’g®) = 0 to conclude the quasi-isomorphism from

Ct. '9", . First we have ker 'g®* = A[1]* @ ker g°. Since

0— 4 LB Lot o
is exact, we have ker’g® = A[1]* @ im f°. The differential dj_, . of the
complex ker’g

dJ

Loprge P ALY @ im 7 — AP @ im 7+ (4.9)
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is defined as
A e (@, (@) 1= (=l (@7, PN 20T 4 du(2?)). (4.10)

Then we have

41
d{(er 'g® d{(er 'g® 0’
ie., madf(er g C kerd] go- Anelement (2741, f(27)) € A[1) @ im f7 of
kerd] g0 Satisfies —dﬁl(aﬂ“) = 0and f/H1 (2741 4 &, (27)) = 0. Since

f* is a monomorphism, we get
I 4 & Je(@?) =0,

For (/11 fi(27)) € ker & let us compute d?

ker’g®? ker q°® .

H e (27,0) = (s <xﬂ>,fj<xj + & H0) = (@7, (@),

Namely, kerd! , . C 1md g holds. Consequently, H (ker’ g ) =0,i.e.,

ker’qg

we get the isomorphism HJ(CJ:.) — H/(C®). That is, C%e . C*isa
quasi-isomorphism.

4.4.1 Properties of Distinguished Triangles

Distinguished triangles in K(.27) have the following properties, and these
properties characterize the totality of distinguished triangles.

(D.T.1) A triangle A® R2LIC N A[1]® is a distinguished triangle.

Proof. This is because: by (D.T.4)
00 L5 40 240 o8 — A0 — 00 = o)1)
is a distinguished triangle. This distinguished triangle is the triangle shifted
leftby 1, i.e.,
o[—1]* L 4 245 40— 0°
1.
of the triangle A®* —% A® — 0®* — A[1]®. The proof will be complete after
(D.T.4) is proved.

(D.T.2) A triangle which is isomorphic to a distinguished triangle is also a
distinguished triangle.

(D.T.3) For an arbitrary morphism f*: A®* — B®, there exist C*, ¢*: B®* —(C*
and h*® : C* — A[1]® so that

A Lope Lo B oapge



Triangles for Exact Sequences 137

is a distinguished triangle.

Proof. We have already constructed such an object C'® as C}o, morphisms
g*, h* as b® and a®, respectively, in (3.5). Namely, C* = C%,., b = [1(}3; ]
and a® = [14.[1]*,0°].

(D.T.4) A triangle A® g Lo I A[1]* is a distinguished triangle if
and only if

B Lo0 a2

is a distinguished triangle.

B[1]*

Proof.

(=) From (D.T.2) we may prove the statement for a distinguished triangle
of the form A* X5 p* ¥, Ce La A[l1]*. Then for the triangle

s L Cf. A[l]' -, BJ[1]* to be distinguished it is enough to
prove an isomorphism between the following triangles:

[1]'
B® 4> Cf' 4>A[ ]

l “.11)
B.

C;. <. ey
where Cj, is the cone of b°* : B® — Cf.. Namely, Cp, := B[1]*& C1.
and the dlfferentlal d7. on Cj, is given by

e

as in (3.7). Furthermore, for C%. = A[1]®* © B*®, we have

bl1)* = [mﬂﬂ‘] wd e = [d?[l[]l] d(g-] |

More explicitly, we can write the differential dj. defined above, as

&y 000
dl:o — 0. dz[l]. 0. . (4.12)
1g[1]* fl]* dp.

As we computed in (3.8) we can confirm dgfl o di. =0.
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Next we will define 4* : A[1]* — Cp, so that v* becomes an isomor-
phism in K(.«7). For

v A)* - g = B[1]* @ C3. = B[1]* @ A[1]* @ B,

if we define
rape
V= 1ae 1] (4.13)
0.
~* is a morphism of complexes. Then ~* also becomes a morphism of
triangles, i.e., 7® 0 a® = ¢* in K(&7). This is because ¢® and 7*® o a® are
homotopic in Co(«/). Namely, for ¢® and v* o a® from C}. to Cf.:

Jj—1 J Jj+1
Cf. Cf. Cf.

e el @14
) y

Jj—1 J Jj+1 .
Cb. Cb. Cb. 9

we need s° : C}a — Cpe[—1]* to satisfy

c® —7%0a® =s[1]° odge — dpe[—1]* 0 5°. (4.15)
Such an s° is:
0* 1%
s =10 0° |, (4.16)
0° o°
ie., s/ ( “;;1 ) = (bgj ) Then for (“Z}Ll ) S C’}., the right and the left
hand-sides of (4.15) become
_fj+1(aj+1)
0.
b

Consequently, ¢® and v®oa® are homotopic, i.e., 7® becomes a morphism
of triangles. Lastly, we will prove that v* is an isomorphism in K(.<7).
ForCp, = B[1]*®A[1]*®B*® define 6® : Cy. — A[1]® asthe projection,
ie.,

bj+1
50 [ @it | = g7t
b
Then we have
fj+1(aj+1)
(5j ° pyj)(ajJrl) — 5 ol — aj+17

0
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ie.,d%o0n® = 1;‘[1].. On the other hand, since we get

it FIH (@)
(o) (@] =@t = [ @t ),
b 0

we look for a homotopy morphism ¢ : Cg. — Cg._ ! satisfying
7% 04® — 1&50 =t[1]* odpe — dpe[—1]® 0 t°.

Choose such a ¢® as

0° 0° 1%
t*:=[0° 0° 0©°
0° 0° 0°

Then we can confirm that v°® o §° is indeed homotopic to 1% .
b.

(<) The converse of (D.T.4) can be proved by the repeated use (e.g., six
times) of the above first half of the assertion. That is, we get the distin-
guished triangle

2]°

A[2° f gl2]°®

h[2]®

B[2)* C[2)* A[3)*

which is isomorphic to A® e Lo AlL]°.
Recall that the proof of (D.T.1) can be completed by (D.T.4).

(D.T.5) For two distinguished triangles
A Lope Lo B apge

and ) /

/Ao i_) /Bo 9.> /Cl. i_} /A[]_].,
ifa®: A®* —'A®and 3° : B®* — 'B* are givensatisfying’' f®oa® = 3% f*,
then there exists v* : C* — 'C*® making the diagram

e L pe oo M Apye
|
la. lﬁo P afl]® “4.17)
, Ife , 1g® , \ e, .
A* B* C* All]

commutative.
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Proof. 1t is enough to prove the commutativity of diagram (4.17) for the
case where C'* = C’;. and'C® = C’,'f.. Then we can let

7 i=a[l]* ®B%: Che — Cfe
togetb®of8® = (a1]*®3°)o'b® where b* : B* — C}.and’b® : 'B* — C?

/f.
defined by
.«._|0° ne._ | 0°
b® = [173.] , and b® = [L.Bl ,

4.4.2 Property (D.T.6) of Distinguished Triangle

Let f®: A®* — B® and ¢° : B®* — C*° be given. Then by (D.T.3) we get
distinguished triangles corresponding to f°® and ¢g°. Also for g®°o f® : A®* — C*°
we have a distinguished triangle. That is, for the middle commutative triangular
diagram, we obtain three distinguished triangles

respectively.

b[1]*0/b®

(4.18)

Then we assert:

(D.T.6) There exist f* : C%e — Chegpe and g° = Clope — Cpo to form
the distinguished triangle

° f. . g® ° b[1]®o’b® °
Cte —1> Cpagpe L Cpa Cpe 1] (4.19)

as shown in (4.18) and satisfying a® ="a® o f* and ¢* = §° o 'c".
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Then we also have f® o’a® ='b* 0 §* and f® 0 b® ="¢® o ¢°.

Proof. We need to find such an f* : Ce — Cley g s0 as to make C. and C’J‘;.
isomorphic. Since C%, = A[1]* @ B® and C? = A[1]* @ C°, the natural

" g.of.
choice for f*° is
o . |lacl]® 0°
f .—{ e g.], (420)

ie., f7(a?t,b7) = (a7, g7 (1V)). Since §* is from C% 1o = A[1]* @ C*® to
Cge = B[1]* & C*, §° should be

G = [f[l]' 0'} ‘ @21

0* 12
Let us prove that there is an isomorphism between the following triangles:

b[1]°0'b®

L] f. ° L] L]
Cfo —_— g‘of‘ g Cgo Cfo [1]

N
C}. —_— C;'Of' ¢ C}'. < Cf' [1].

Since §° is from Cj. = B[1]* @ C' to

O3 = Cp [l & Caope = (A" © BY)[1] & (A[1)* & C*) =
— A2 @ BI* @ A[1)* © C°,

0° needs to be an identity morphism. To be precise,

0* 0°
. |1g[1* o0°
e
0 1f.

On the other hand
'5® . C’}_ =AR2]*@B1]*® A[1l]*® C* — C;. =B[l]*®C*

needs to be defined so that the image (0, 5%, 0, ¢7) of (b1, ¢/) by §° may be
(k11 ¢7) by 6. Hence, let

go . [00 el fU* 0°
ot o000 12
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Then we have '6® 0 6* = 1%.. . Since 6® o’d® does not equal 1., we need to
g® Fe

prove that §° o /§® is homotopic to 1%, . If we define s : C’}. — C’j;l by
f.

0° 0° 1ae[1]* ©°

.. 0* 0° 0° 0°
N O. O. O. O. b

0* 0° 0° 0°

then we obtain

18, = 8% 0'6" = s[1]" 0}, —dp[-1]" 05"

That is, in K(«7), ® is an isomorphism. One can confirm that’4® is a morphism
of triangles, i.e., §* = 'd® o *¢®. Confirm also that the commutativity of all the
triangular diagrams in (4.18). Finally, two-way two paths connecting B® and

Cyeo e also satisfy the commutativity.

4.4.3 Remarks on Diagram (4.18)

There are other ways to write diagram (4.18) for (D.T.6). For example, we
can write (4.18) as

(4.22)

b[1]®o'b®
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or as
Che
: (4.23)
N\
O\
ASN
A. C;'
R /

The property (or axiom) (D.T.6) is said to be the octahedral property (or axiom)
because of the octahedral shape of the diagram (4.22).

4.4.4 Distinguished Triangles in Derived Categories

First we will define a distinguished triangle in the derived category D (<)
via the notion of a distinguished triangle in K(%7). Let ¢* : A* — B*® and
¥* : B®* — C* be morphisms in D(.¢/). For a morphism \* : C* — A[1]® we
have the triangle

AL pe oo A Ape (4.24)

in D(.«7). Then the triangle (4.24) is said to be a distinguished triangle in D(.<7)
when the following are satisfied: for a distinguished triangle

I® g°

' A® 'B® Ton h* /A[l]. (4253.)

in K() there is an isomorphism of D(.7) from triangle (4.25a) to triangle
(4.24). That is, for the localizing functor

Qu : K(e) ~ D()
as in (1.7), the triangle

' A0 Qur f* ' Qe g° o Qurh® /A[l]' (4.25b)

in D(.«/) is isomorphic to triangle (4.24).
Let us verify some of the properties (D.T.1) through (D.T.6). Let

¢*: A* — B°®
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be a morphism in D(.e7). Choose a representative (f®, s®) of ¢* = f*/s® asin

(1.12). Namely, we have
S

° BO
A o P
which give us the following diagram

A. f /B. 4 C;. a A[l].

Tl;‘. T . Tlc;“ lem. (4.26a)
¢° ostllos e @ty

A® B* C3e A1,

The first row of (4.26a) becomes a distinguished triangle in K(.<7) by the con-
struction of the mapping cone of f* in (3.5). Then the functor Q. : K(&7) ~~
D(</) takes this distinguished triangle to the triangle in D(.)

. lb./lé..
A° I*/1lipge /B. f C}.

a./lA[I]o

Al1]® (4.26b)

as Q. s® becomes an isomorphism in D(.<7). Namely, the triangle of D(.2/) in
the second row of (4.26a) and the above triangle (4.26b) are isomorphic. That
is, an arbitrary morphism ¢® : A®* — B® of the derived category D(.<7) can
be embedded into a distinguished triangle, i.e., property (D.T.3) of Subsection
44.1.

Next, let us verify (D.T.6) for the derived category D(<7). In D(<7), let
¢°®: A®* — B® and ¢° : B®* — C*° be morphisms. Then we have

¢.O¢.:A.—>C..
We also let ¢* = f*/s® and ¢)®* = ¢°®/t* asin (1.13). Then from (1.13), we get

B.
fe/se g°/t*
A* Ce.

/g'of‘//s‘ot°

By using the notation in (1.13), we have in K(.<)

/Bo
f. /g.
/ \ (4.28)
A.

iFall
/g.of. C *
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Note that there are quasi-isomorphisms s® : B® — 'B®and’s®ot® : C* — "C*.
By (D.T.6) for K(.<7) in Subsection 4.4.2, for the three distinguished triangles
corresponding to f*,’g® and 'g® o f*

[1]

F.

D.

(4.29)

we have the distinguished triangle in K(.27)

DL T pe D, (4.30)

asin (4.29), where D® = C’}., E* = C’,’g.of. and F® = C,'g.. By the construc-
tion of the distinguished triangle in D(.<#) for a morphism, i.e., (4.27), we have
in D(«7)

/B.

AO > //O. /

/g.Of.//S.Ot. Y

(4.31)
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Since Cg. = B[1]* ® C* and Cf}. = 'B[1]* & "C* and since B* — 'B* and
C* — "C* are quasi-isomorphisms, the functor Q. : K(&/) ~ D(«) takes
the distinguished triangle (4.29) to the triangle isomorphic to the triangle in
D(«)

1

[ ] (] f. (] (] ° (] ° ;:l. °
D - Cf. — E - C’g'of' — g°® ~ C/g. e D[l] 5 (432)
where, explicitly,
g =Glre(stot)) " ogt

and

h* = (0" 0s®/18,,) 0 (b /1)
as in (4.26a). Namely, the triangle in (4.31)

p* Lope oo B opppe
is distinguished in D(«7), i.e., (D.T.6) for D(«).
As for (D.T.4), the corresponding claim of (D.T.4) for D(.«7) follows from
the diagram in (4.26a). Namely,

—faJ®

/Be > Che —— A[1]? 'Bl1J*
T 1-T PT sm-T (4.33)
B cs. A —A _ ppge

if the first row triangle is distinguished in K(<7) then since s® is a quasi-
isomorphism, the second row triangle of (4.33) is a distinguished triangle in
D(«7). The converse is also confirmed in a similar way.

We will now confirm (D.T.5). That is, for two distinguished triangles in
D(«</) and morphisms a® and 3° of D(</)

Ao L pe oo 2N Ape
|
la- lﬁ' e lam- (4.34)
/e 1,,@ Y \e
/Ao ¢ /Bo w /C. A ,A[l].

satisfying '¢® o a® = [3* o ¢*, we need to construct v* : C* — 'C* to satisfy
"4p* o B* = ~4* o 4)*. First, replace the above distinguished triangles of D(.<7)
by distinguished triangles of K(.&7) that are mutually isomorphic in D(.«7) as a
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pair. Let «® :='a®/u® and 3° :='(3* /v®. Consider the following diagram:

/,A.i7//I'7>_//B07777>//C. 77777 >//A[1}.
/C% /6./ I~ /'4 T\ /
/
q° v |
A* 7 B*® Cc* | All)* ull]*  (4.35)
N\

\ » \ y e
o g 7 ohr A

! A® ! e ¥al) 1 °

A /fl B /go C /ho [ ]

for

"A®e— — Z/f: — > mpe
A
|
" e (4.36)
|
I A® veo'fe //lBo

the far right square extracted from the above (4.35), we can have a quasi-
isomorphism "u® and a morphism " f* as indicated in (4.36). Since 'u® and v*
are both quasi-isomorphisms, we may claim that there exists an

,/f.:”A.g)”B.

in (4.35) making the far right square commutative. By (D.T.3) for K(<7) we
get a distinguished triangle

//f. /o ]

l/h.
I/Ao I/Bo //C.

//A[l].'

Then by (D.T.5) for K(«7) we obtain 'v* : C* — ”C* as in (4.35) and also by
(D.T.5) for K(<), we have a quasi-isomorphism w® : C* — "C* as in (4.35).
Then let v :='4*/w® : C* — 'C*® as in (4.35). (Note that the details of the
proof are left to be completed.)



Chapter 5

COHOMOLOGICAL ASPECTS OF ALGEBRAIC
GEOMETRY AND ALGEBRAIC ANALYSIS

5.1 Exposition

The most fundamental object of study in Algebraic Geometry is the set of
(or the number) of solutions of a system of (polynomial) equations. That is, for
a system of equations

fl(:L'l,CCQ, . ,:cn) =0
fg(.%'l,xg, . ,xn) =0

(1.1

fl('th%'-'axn) =0

with coefficients in a commutative ring A with identity, we seek for solutions
in an algebra B over A, i.e., (by,by...,b,) € B":= B x B x -+ x B. Such

n
a solution is said to be a B-rational point. In terms of commutative algebra we
can rephrase the above as follows. For a finitely generated A-algebra C,

A[X1, Xo, .., Xp] 2 C — 0,

where the A-algebra homomorphism is the canonical one defined by W(X}) =
Tk, 1 < k < n, a B-rational point is an A-algebra homomorphism s to make
the diagram

A[X1, Xo, . X0/ (f1s for -5 i)

TL \ (1.2)
é
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commutative, where the A-algebra homomorphism ¢ is defining the algebra
structure of B. Namely, for the finitely generated A-algebra C'

C= A[l‘l,l‘g,. : 'axn]

AlX1, X, ..., Xp]/ ker U

A[Xl,XQ,...,Xn]/(flyf%-“vfl)

the set Hom 4 (C, B) of all the A-algebra homomorphisms is the set of all B-
rational points of C'. That is, for s € Hom4(C, B), the commutative diagram
gives

s(fr(x1,me, ... 20)) = s Zail...ln:ﬁllx’f .- xif) =
= Za’ll vinS xl ( 2) (xn) = (13)
= @iy, DDE b = 0.

In general for a scheme X over a commutative ring A, the set of scheme mor-
phisms from an A-algebra B to X is the set of B-rational points on X:

X

[~

Spec A Spec B.

We often write X (B) for the set of B-rational points on X . Compare the above
rational point notation with the formulation of Yoneda’s Lemma in Chapter 1.
For example, let Z be the ring of integers and let p be a prime. From

ZOpLOp* LD, (1.5)
we get the sequence

o ——= 77— 1| p* T — 7L pL. (1.6)

The inverse limit of (1.6) is said to be the ring of p-adic integers denoted as Zp.
We have the fan as in (8.3) in Chapter I:

Z/pn-HZ

y

>

(1.7)



The Weierstrass Family 151

For a Zp—rational point s on a scheme X, i.e., s € X (Zp), the composition
s o Spec a,, of the morphisms in

X

soS anp
T e (1.8)

Spec am,

Spec Zp <~——— SpecZ/p"Z
gives a solution in Z/p"Z, i.e., a Z/p" Z-rational point on X for every n > 1.
we simply write, e.g., Zp for Spec Zp.
More generally, let us consider the system of /-homogeneous polynomi-
als f1, f2, ..., fi with coefficients in a finite field F), := Z/pZ and let I =
(f1, f2,..., fi) be the ideal in F),[ X7, Xo, ..., X,,] generated by the f;. Then

let U (IF,) be the set of IF),-rational points on U = Proj(F,[ X1, Xo, ..., X,]/1I).
Define also
Ny, = |U(F )| = the number of F-rational points on U,

_ 1.9
i.e., the number of morphisms in Homp,, (F o> U ) (1.9)

where [, is the extension field of ), of degree k. Then the zeta function Z;
of the projective variety U over [F), is defined by

r(log Zg(T)) = 32320 Neni T, 010
where Z7(0) = 1. '

General conjectures on the zeta function associated with an algebraic variety
defined over a finite field appeared in

x Weil, A., Numbers of Solutions of Equations in Finite Fields, Bull. Amer.
Math. Soc. 55, (1949), 297-508.

For cohomology theory and the Weil conjectures, see

x Motives, Part 1, Proceedings of Symposia in Pure Mathematics, 55, the
AMS, (1994).

5.2 The Weierstrass Family

We will review some of the basic facts about the Weierstrass family. The

Weierstrass equation
Y2 =4X3 — g X — g3 (2.1)

is obtained from the cubic equations

Y2 =aX?+bX?%+ X +4d, a#0. (2.2)
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Figure 5.1. Deligne and the author’s shoulder, at the IAS (the Institute for Advanced Study),
1986

Figure 5.2.  Lubkin, Weil and the author’s shoulder, at the IAS, Princeton, 1986

That is, let us introduce a new variable X through a linear substitution X :=
X + 3% We can assume b = 0 in (2.2). Namely, we have reduced the general
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cubic equation as (2.2) to
V?=aX?+ X +d.
Making the linear substitutions Yy = aY and Xy = a X we get
Y§ = X§ + acXo + a’d, a # 0.
Therefore, the general cubic equation reduces to the following
Y2 =X34aX +d. (2.3)

Furthermore, if the characteristic is not equal to 2, the linear change Yy = %
would give
v2—x%4 Sx 44
4 4

Namely, the Weierstrass equation is a normalization by linear changes of coor-
dinates of the cubic equation Y? = aX? + bX? 4 cX + d.

In terms of schemes (i.e., geometric terms), we can rephrase the above argu-
ment as follows. Let R be a (commutative) ring with identity and let a be the

ideal of R|[gs, g3, X, Y, Z] generated by the homogenized equation
Y2Z =4X3 — 2 X 7% — 32

of (2.1), ie, a 1= (=Y?Z + 4X3 — 2 X7Z? — ¢g373). Then the Weier-
strass family is the algebraic family over the Euclidean two-space over R,
Spec R[ga, g3] =: A*(R):

Wg := Proj(Rlg2, 93, X, Y, Z] /a), (2.4)

where R|[gs, g3, X, Y, Z] is considered as the graded R|[gs, g3]-algebra such that
each of X, Y, Z has degree +1 and the elements of R[g2, g3] all have degree
zero.

Also, put b := (=Y2Z + aX?3 + bX%Z + cX Z? + dZ?) and consider the
algebraic family over

Spec(Rla,a™,b,¢,d]) = A*(R) — {the hypersurface a = 0} :

Gr = Proj(Rla,a™",b,c,d, X,Y, Z] /b). (2.5)

If 2 is invertible in R, then the base Spec(R[g2, g3]) of the Weierstrass family
W is a closed subscheme of the base Spec(R[a,a !, b, ¢, d]) of the algebraic
family G of (2.5). Namely, Spec(R[g2, g3]) is the closed subscheme defined
by the ideal

(a —4,b,c+ go2,d + g3).
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Note that the Weierstrass family W, is the pull-back of G under the closed
immersion

Spec(R]g2, g3]) — Spec(R]a, a lb,e, d)). (2.6)

On the other hand, we have observed earlier the following: when 2 and
3 are invertible in R, the general cubic equation (2.2) can be reduced to the
Weierstrass equation (2.1). That is, if 6 is invertible in R, we have found an
R-algebra homomorphism

R[927 93] - R[CL, a_17 b7 ¢, d]a (273)
or a morphism of affine schemes over Spec R,
Spec(R[a,a™!,b, ¢, d]) — Spec(R[g2, g3]) (2.7b)

so that the pull-back of the Weierstrass family W under (2.7b) is canonically
isomorphic to Gp.

Let us apply the Jacobian Criterion to the Weierstrass affine algebraic family
defined by

Spec (R[g2, g3, X, Y]/(=Y? +4X° — 32X — g3)) (2.8)

over A2(R) = Spec(R[g2,g3]) to find the set of points in the base space
Spec(R]g2, g3]) over which the fibre is singular. For a point p := (g5, g3)
in the Euclidean 2-space A%(R) = Spec(R|[g2, g3]), a point (x, y) in the Weier-
strass affine family (2.8) over the point (g5, g5) is a singular point in the fibre if
and only if the Jacobian Criterion holds: the polynomials

a (-Y? +4X° — gh X — gb) 2.9%)

P (“Y? +4X3 — gh X — gf) '
in k(p)[X, Y] vanish at the point (x,y) in the fibre of the Weierstrass affine
family (2.8), where k(p) is the residue class field at p = (g5, g4). Therefore, a
singular point in the fibre must satisfy

—2Y =0
{12)(2 _d =0 (2.9b)
92 =
and
—Y? +4X% —ghX —gi = 0. (2.10)

That is, in order to find all the points (g5, g5) in the base where the fibres of
(2.8) are singular, we must find all the points p € A?(R) to satisfy (2.9b) and
(2.10). Such a solution exists if and only if

122% = g},
{4933 ST @.11)
92T — 93 =
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have a simultaneous solution in a universal domain K of x := k(p). Such a
K can be any fixed algebraically closed field of infinite transcendental degree
over k = k(p). From the first equation in (2.11), the only solutions are

1 /
w=+4/22 (2.12a)
2V 3

In order to satisfy the second equation of (2.11), we must have

14 1\/@ szg—éw/@— - (2.12b)
2V 3 o\ 9 '

in K. Namely, we have
1/g5\5
%(?2) =g} (2.12c)
Equation (2.12c¢) has a solution if and only if the square has a solution, i.e.,

(g5)” —27(g)* = 0. (2.12d)

Therefore the fibre over a point p € A?(R) of the affine Weierstrass family
(2.8) has a non-simple point if and only if p is on the hypersurface

A= g3 —27g3 (2.13)

in A%(R). That is, the fibre over p € A?(R) = Spec(R|[gs, g3]) contains
a non-simple point if and only if p is on the closed subscheme of A%(R) =
Spec(R[g2, g3]) defined by the ideal in R[gs, g3] generated by the element
A= g3 —27g3.

Let p be on the hypersurface defined by A = g3 — g3 = 0in A%(R) (i.e., the
images of g} and g4 of g, and g3 in the field r satisfy (gé)3 — 27(gg)2 =0in
). We shall see how many singular points there are in the fibre over p. We have
observed that a point (z,y), x,y € K, is a singular point if and only if (z, y)
satisfies equations (2.9b) and (2.10) in K, i.e., y = 0 and equations (2.12a) and
(2.12¢) hold. If g5 = 0 then (2.12d) implies g5 = 0. For g}, = 0, from (2.12a),
x = 0. Namely, we have a unique singular rational point X =Y = 0 in the
fibre over p. If g5 # 0, then there exists only one solution (x,y) satisfying
(2.9b) and (2.10). That is, y = 0 and x equals either

1 /g 1 /g5
oV AEN
Note also that from (2.3) we get

2= (2.14)
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From equation (2.12c) we conclude i = 0. Then 423 — ghx — g4 = 0. Substi-
tuting 72 = g} of (2.14) into z(42? — g}) — g5 = 0, we get
A9

:,;(E —g5) — g5 =0. (2.15)

Namely, assuming g} # 0, we have

/
p— 395 (2.16)

24

When gh = 0, (¢5)° —27(g4)” = 0 implies that g} = 0. This case has already
been considered.

Summarizing the above discussion, for a point p € Spec(R[gz, g3]) the fibre
of the affine family (2.8) over x = k(p) is singular if and only if the images ¢/
and g4 of g and g3 in x under the natural epimorphism R[g2, g3] — & satisfy
(2.12d). Then the fibre Spec(k[X,Y])/(-=Y? + 4X? — g9 X — g3)) has a
unique non-simple point. This non-simple point is a x-rational point given by

(z,y) = (—25‘2, 0) (2.17)

for g, # 0 (then g5 # 0). In the case where g, = g4 = 0, the rational point is
(0,0).
The affine family (2.8), i.e.,

Spec (R[gg,gg, X, Y]/(—Y2 +4X3 — g X — gg>)

is the open family defined by “Z # 0” or “Z = 1” in the Weierstrass pro-
jective family Wx over A?(R). Let (z,v, z) be a point on W, satisfying the
homogeneous equation

Y27 +4X3 — ghX Z? — g4 73, (2.18)

where (gh, g4) corresponds to a point in A%(R) as mentioned before, and
(x,y,z) is a set of homogeneous coordinates in a universal domain K for
k = k(p). For (z,v, ) satisfying (2.18), if z = 0 then = 0. Therefore, the
affine open “X # 0” of P?(R), the projective 2-space, meets the Weierstrass
family W, in a subset of the affine open “Z # 0”. Therefore, there are some
points of W which are not on the affine family (2.8), i.e., on the open “Z # 0”
of P2(R) and on the affine “X # 0”. Therefore, such a new point on Wy, that is
not on the affine “Z # (0” must be on the affine open “Y” £ 0”. The intersection
between Wx and “Y # 0” can be obtained by letting Y = 1 in (2.18)

—7 +4X3 — o X 77 — g3 25, (2.19)
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By the Jacobian Criterion, a point (x, z) on the affine open (2.19) of Wx over
(g5, g3) is anon-simple point in the fibre if and only if the following polynomials
with coefficients in k = k(p):

ap(—Z +AX3 — ghX 7% — g4 Z3) (2.208)
Do (—Z +4X3 — ghX 7% — gi Z3)
vanish at (x, z). That is,
—1-295X7Z —3g52* =0
s o0 (2.20b)
12X% — ghZ? = 0.

Since we have covered all the non-simple points in the fibres which are on the
affine open “Z # 0” of W we will study those points of Wx which are not
on the affine open (2.8):

Z =0.

Notice that the equations in (2.20b) have no solutions in any fibre of W i over any
point (g5, g4) in A%(R). This is because z = 0 implies x = 0 from the second
equation of (2.20b). Then the first equation becomes —1 —2g5-0—3¢g3-0 = 0,
i.e., 1 = 0. Namely, every point of W which is a non-simple point in the fibre
over A? (R) is on the affine open (2.20b). We shall call those points of W p that
are not in the affine open “Z # 07, i.e., (2.8), the “points at co of Wr”. What
we have observed in the above can be rephrased as all the points at oo of Wg
are simple points in each fibre. That is, as for singularities, we only need to pay
attention to the “finite points” on the affine family (2.8).

Let us observe that the Weierstrass family W g, is the closed subscheme of
P2 (Spec(R[g2, g3])) determined by Y2Z = 4X?%gy X Z? — g3Z°. On the other
hand, the Weierstrass affine open family (2.8), i.e., “Z # 07 is the closed subset
of A%(Spec(R[g2, g3])) given by Y? = 4X3 — go X — g3. The closed subset
of the points at oo of Wg, i.e., “Z = 07, is the complement of the affine open
“Z # 0”. For homogeneous coordinates (z,y, z), where x, y and z are in a
universal domain K for  as before, (z,y, z) is a point on Wg, if and only if
(z,y, z) satisfies the homogeneous equation

—Y?Z +4X3 - ghX 2% — g7 =0

in K. Then (x,y, z) is a point at oo if and only if (z, y, z) satisfies Z = 0. That
is, if the point of P?(Spec ) defined by (z,v, 2) is a point at co of W over
p € Spec(R[g2, g3]), then z = 0. By the equation

~Y?Z +4X? — ghXZ? — g7 =0

we then have x = 0. Therefore, for every p there is one and only one point at co
of Wr C P?(Spec(R[g2, g3])) in the fibre of W over p. This point is the point
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of the fibre P?(Spec ) of P2 (Spec(R[g2, g3])) overp € Spec(R|g2, g3]). given
by the homogeneous coordinates (0, 1,0). Consequently, the unique point at
oo of Wx, over k(p) is a rational point for every p in the base Spec(R[g2, g3])-
Note also that the closed subscheme of points at infinity of W over A?(R) is
isomorphic to A%(R) over A?(R), and that the closed subscheme is contained
in the set of simple points of Wg over A%(R).

Summarizing the above discussion, there is one and only one point at infinity
in each fibre. Such a unique point at co in each fibre is a simple point and a x-
rational point in the fibre over p for every p € A?(R). Namely, all the singular
phenomena occur on the affine open (Z # 0), i.e., on the Weierstrass affine
family (2.8).

We will study singular fibres next. We have previously observed that for
p € Spec(R[g2, g3]), the fibre of Wx over p is singular if and only if p is on
the closed subscheme

G — 273 =0 (2.21)

of the above base scheme. Or one can say that the images ¢/, and g4 of g2 and
g3 in k = k(p) satisfy (2.21). Recall that for a polynomial P of degree n over
a field, the discriminant of P is defined by

A= T (o — o), (2.22)
1<i,j<n
1#]
where 01, 02, . . ., 0n, are the roots of P in an algebraic closure. Then the three

roots of the polynomial 4X3 — g, X — g3 are not distinct if and only if equation
(2.21) holds. That is, the affine curve over the field

V2 =4X® - X — g3

is non-singular if and only if 4X3 — go X — g3 has three distinct roots, i.e., is a
separable polynomial.

5.2.1  Singular Fibres in the Weierstrass Family

In Section 5.2 we observed that for p € Spec(R[g2,g3]) the fibre of the
Weierstrass family Wx corresponding to R is singular if and only if A =
gg’ — 27g?2) vanishes at p. Furthermore, all the singular points are on the affine
open

Spec (K[X,Y]/(Y? = 4X® + g2 X — g3)),

where k = k(p). We also observed that on this affine open, there exists a
unique singular rational point over x = k(p). Namely, for each point p on the
closed subscheme A = g3 — 2793 = 0 of the base affine scheme A%(R) =
Spec(R[g2, g3]) for Wg, there exists exactly one non-simple x-rational point
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on the fibre of Wy over p. There are two types of singular fibres. Namely,
the first type are singular fibres over points satisfying A = g3 — 27g§ = 0 but
g2 # 0 (hence g3 # 0), and the second type are fibres over points g = 0 (hence
g3 = 0). Let p € Spec(R|[g2, g3]) satisfying g5 = g5 = 0 in . Then the fibre
of Wr over k is given by

Y27 = 4X3, (2.23)

is an equation of a cusp. If we let W be the fibre of Wx over p, then W is
birationally equivalent to P(k). Note that the fibre W over p has only one
singular point, called the cusp point, x = y = 0. Next, consider the first type,
ie.,

3 2
(95)" —27(g5)" =0 (2.24)
and ¢4 # 0 and g4 # 0. Consider the following affine curve over the a field &

Y2 =4(X —r)(X — ) (X —r3). (2.25)

Then by the Jacobian Criterion if all 71, 79, 73 are distinct, the affine curve (2.25)
is simple. Equation (2.23) corresponds to the case when all the roots r1, 72,73
are equal. When 4X3 — g X — g4 is factored linearly in an algebraic closure
K of k, only two of their roots r{, 72,73 in kK are equal. We have observed

that such a double root of 4X? — g2 X — g3 is the unique singular point of

Y2 =4X3 - ghX — g} givenby (z,y) = (_g%, 0). Let r be the third root of
2

the cubic equation:

4X? — ghX — gy = 4(X + 39—3)2()(—7«). (2.26)

/
2 )

The constant terms of (2.26) give —g} = 4(ghX — gé)Q(—r), ie.,

That is, 4X3 — g5 X — g} can be factored linearly over  as

2
S X — gy —a(X 4 29y (x - L%)
4X° — go X 93_4(X+2gé) (X -3 o )-

Let Xo := X + %Z—éZ. Then the fibre of Wz over « is of the form
2

Y2Z = 4X3(Xo — ¢Z),
where 0 # ¢ € k. Furthermore let X := ¢X;. Then we get

Y2Z =43XE (X, - Z),
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or

Y2Z =bX3(X, - 2), (2.27)
where b := 4c®. The unique singular point in the homogeneous coordinates
(X1,Y,Z) on the projective curve (2.27) is (0,0,1). A cubic equation as in
(2.27) is said to be a projective line with an ordinary double point. If x =
k(p) = C, the field of complex numbers, the the classical singular homology
of the fibre W of Wx over k = C becomes

H,;(W,C) =~ C.
For elemental properties of projective geometry, see
* Hartshorne, R., Foundations of Projective Geometry, Benjamin, 1967
is recommended. For elliptic curves, for example, see

x Silverman, J.H. and Tate, J., Rational Points on Elliptic Curves, Undergrad-
uate Texts in Mathematics, Springer-Verlag, 1992.

5.2.2  Lifted p-adic Homology with Compact Supports of
Fibres of the Weierstrass Family; The case of
varieties over C

The main reference for Chapter V is:

[LuHC] Lubkin, S., Finite Generation of p-Adic Homology with Compact Supports.

Generalization of the Weil Conjectures to Singular, Non-complete Algebraic
Varieties, Journal of Number Theory, 11, (1979), 412-464.

Let X be a complex algebraic variety which is embeddable over C and let
Xiop be the closed points of X with the classical topology. Let Y be non-
singular over C of dimension /N so that X may be closed in Y. Then the
definition of the homology of X with compact supports H; (X, C) is the relative
hypercohomology

H$(X,C) == H*N (Y, Y — X, Q2).

See [LuHC] in the above. Then since Y is non-singular over C, we have the
canonical isomorphism from H2V=7(Y,Y — X, Q%) to the classical singular
cohomology H*V =7 (Y;op, Yiop — Xiop, C). By applying the Lefschetz duality
to the oriented 2/V-dimensional manifold Yo, and the subspace Xi,,, we have

H2N—j (}/top; Kop - Xtopa C) ~ Hg(Xtopy (C) (2-28)

where the right hand-side of (2.28) is the classical Cech cohomology. Since X
is an algebraic variety, we have

H/ (Xiop, C) & HI(Xiop, C). (2.29)
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Since all these cohomology groups are finitely generated over C, passing to
duality over C, we obtain,

HQN_j(YtOPa Ytop o XtOP’ (C) ~ H§(Xt0P’ C)' (2.30)

That is, we have H$ (X, C) ~ H$(Xiqp, C).

In particular, if X is an embeddable complete complex algebraic variety,
then we get H5(X, C) ~ H;(Xiop, C), the classical singular homology. This
is because singular homology with compact supports is the same as ordinary
singular homology. When X is a fibre of the Weierstrass family over p where
k(p) = C, then Hj(X, C) is isomorphic to the usual singular homology of X
with complex coefficient. Namely, we have

H§(X,C) ~ H§(X,C) = C,
Cae C, for an elliptic curve X

HE(X, C) ~ C, for a projective line with 231)

ordinary double point

0, for a projective line with a cusp,

H?(X,(C) =0,forj #0,1,2.

Next, let us consider varieties over characteristic zero fields. Let K be a field
of characteristic zero and let L be an extension field of K. For an algebraic
variety X over K which is embeddable over K, X X i L is an algebraic variety
over L and is embeddable over L. Let Y be non-singular over K containing X
as a closed subvariety. Then Y X i L contains X X g L as a closed subvariety
over L. Then Y x L is affine over Y and the direct image of Q7 (Y xx L)
is Q% (Y) ®x L. Therefore, we have an isomorphism

H(Y,Y — X, Q0% (Y)) @k L ~
~H/(Y xg L, (Y xg L) = (X xx L), Q0(Y xx L)), (2.32)
namely,
H$(X,K) ®k L ~ H{(X xx L, L) (2.33)

as vector spaces over L for all j. In the constant characteristic zero one can
generalize the above as follows. Let K and L be rings containing the field
Q of rational numbers. For a ring homomorphism from K to L, we have a
right-half-plane spectral sequence

Tor,(Hy (X, K), L)
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abutting upon HS (X, L).
When K can be embedded in C, (2.32) implies

HY(X, K) @5 C~ HY(X xx C,C). (2.34)

We have shown that the right hand-side Hj(X x g C, C) is the classical complex
homology with compact supports of the complex variety X xy C. If X is
complete, then it is the classical complex homology of X x i C. In the case
where K is an arbitrary field of characteristic zero, let Ky be a subfield of
K which is finitely generated over QQ so that there may exist an embeddable
algebraic variety X, over K satisfying Xy X g, K ~ X as varieties over K.
Then, by (2.33), we get

H;(X, K) =~ H;(X(), Ko) R K, K.

For H;(Xo, Ky) we can use (2.34).

Such a method of reducing characteristic zero varieties to the case of varieties
over C is called the Lefschetz principle.

We next consider homologies with compact supports of fibres of the Weier-
strass family in characteristic zero. From what we have discussed in the above,
we obtain the following: Let R be a commutative ring with identity and let
X be a fibre of the Weierstrass family W at p € Spec(R[g2, g3]) where the
characteristic of x = k(p) is zero. Then we have

HS(X, k) ~ H§(X, k) =~ K,

Kk & K, if X is an elliptic curve
(namely, X is a non-singular fibre)

H(X, k) = ¢ K, for a projective line with (2.35)
ordinary double point

0, if X is a projective line with a cusp,

\ Hj(X, k) =0,forj #0,1,2.

Let us now consider the case where the characteristic of the field k(p) at
p € Spec(R[g2, g3]) is p # 0. As before, let X be a fibre of W g over p in the
base. Let & be a complete discrete valuation ring with mixed characteristics
having k as the residue class field and K as the quotient field of &'. Then for a
non-singular and proper lifting X over K of the fibre X over £ (i.e., X is
an elliptic curve), we have

__ 112N—J
HY(X, K) = B2V (X, K)
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by taking Y = X. The right hand-side is the lifted p-adic cohomology in

[LuPWC] Lubkin, S., A p-Adic Proof of Weil’s Conjectures, Ann. of Math. (2) 87,
(1968), 105-255,

and H2V=J( X, K) is the hypercohomology H*V =/ (X i, K) in [LuPWC]. That
is, we obtain H} (X, K) ~ Hf(Xk, K). Therefore, we get

H{(X,K) ~ H§(X,K) ~ K
H{(X,K)~ K& K if X is non-singular.

If X is a singular fibre, by direct computation we obtain

K forj=0,2

HS(X,K) ~ .
J 0 forj+#0,2

K if X is a projective line with
H{(X,K) =~ an ordinary double point
0 if X is projective line with a cusp.

5.2.3 The Universal Coefficient Spectral Sequence

Let & be a complete discrete valuation ring with the quotient field of char-
acteristic zero and the residue class field k. (If &' is a field then K = & = k.)
Then we have the following spectral sequence in [LuHC] especially (26) on
page 426.

Theorem 18. Let A be an O-algebra and let B be an A-algebra. We also let
A= (A®p k)peq and B := (B Q¢ k)peq. For a scheme X over A which
is embeddable over A, let Xp 1= X Xgpec(a) Spec(B). Then there exists a
right-half-plane homological spectral sequence called the universal coefficient
spectral sequence.

Ez’q = Tor}éT@@K(H;(X7 AT R K),ET ®¢ K) (2.36)

abutting to HS (X, Bt @ K).

We are interested in a special case of the spectral sequence (2.36) as follows.
Let F' : A — A be an endomorphism of A so that F' induces the p-th power
endomorphism of A = A/pA, where p is the characteristic of k = k(&'). Then
there is a unique ring homomorphism

A— W(A), (2.37)

where W (A) is the Witt vectoron A = A/pA. See
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[LuBW] Lubkin, S., Generalization of p-Adic Cohomology; Bounded Witt
vectors, Compositio Math. 34, (1977)

for Witt vector cohomology', and for the t-completion, see [LuPWC]. Let
p € Spec(A), where k(p) is a perfect field. Then there exists a natural homo-
morphism from A to the Witt vector on k(p), i.e.,

A — W(k(p))

where W (k(p)) is the unique mixed characteristic complete discrete valuation
ring having k(p) as its residue class field. For our Weierstrass family case, we
let A := Zp[gg, g3]. For a maximal ideal p € Spec(A) (i.e., a closed point),
k(p) is a finite field. Let g5 and g4 be the images of g2 and g3 in k(p). We can
construct the Witt vector W (k(p)) as follows. Each if ¢} and g4 is either a root
of unity of order prime to p or else zero. Let p be an element of k(p) which is
a multiplicative generator of the cyclic group k(p) — {0}. Then each element
of k(p), including g5, and g5, is either a power of p or else zero. Let a be the
multiplicative order of . Embed Zp as a subring of C and let "o be any fixed
root of unity in C of order exactly a. Then the subring generated by Zp and 'p
in C is the Witt vector W (k(p)) = Z,['o]. For gh = o', let'gh = ("0)’ (and
similarly for ’g5). For g5 = 0, let g5 = 0.

Our special case of the universal coefficient spectral sequence is obtained as
follows. As before, let A be an &-algebra and let F' be any ring endomorphism
of A so that F' may induce the p-th power endomorphism of A/pA. For any
prime ideal of Spec(A ®¢ k)rea = Spec(A/pA) = Spec(A), we get a natural
homomorphism A — W (k(p)) as in the above. For our case, A := Z,[g2, 93],
and p is a maximal ideal of A. Then we have k(p) = (Z/pZ)[g}, g5] and
W (k(p)) = Zy['gb," ). The natural homomorphism A — W (k(p)) becomes

/ll]

Zplg2, 93] — Zy['gb," g

defined by g» — g5 and g3 — g5. Let B = W(k(p)piw) where k(p)P
is the purely inseparable algebraic closure of k(p). Then B = W (k(p)? )

is a complete discrete valuation ring of mixed characteristic having k(p)?™ "~
as the residue class field, and B ®7 Q is a field of characteristic zero. For a
scheme X over Spec(A) which is embeddable over A, the fibre X, over k(p)
is an algebraic variety over the field k(p). Then let Yy, := Xy Xy k(p)P™~

The zeta matrices have coefficients in the quotient field K, = B ®z Q of
the complete discrete valuation ring B = W (k(p)? ~ ). Then the universal

!Private communication with Pierre Deligne; Boundedness condition in bounded Witt cohomology is not
necessary.
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coefficient spectral sequence in [LuHC] becomes
t
By, = Tory “*Y(Hy(X, AT 02 Q), K,) (238)

abutting to H¢ (Y}, K,). Namely, the lifted p-adic homology with compact
supports of the algebraic family X over Spec(A) computes the lifted p-adic
homology with compact supports of all the fibres in the family. Furthermore, the
zeta endomorphisms of Hy (X, AT ey Q) will compute the zeta endomorphisms
of the lifted p-adic homology with compact supports of every fibre Y},. For a
finite field k(p), if the Eiq—term of (2.38) is a finite-dimensional vector space
over K, for all p and ¢ (and if E; q = 0 for all except finitely many p and g),
then the zeta function of the fibre X}, = Y}, is given as follows: Letting P, ;, be
the (reverse) characteristic polynomial of the endomorphism of Ei o induced
by the (p")-power map, p" = card(k(p)),

Hp+q:odd Ppyq (T)
Hp+q:even Pp»q (T)

See [LuHC] for (2.39). Thus, we can compute the zeta function of every fibre
over a finite field in the algebraic family of X over A. A zeta endomorphism
is said to be a zeta matrix for a free module HZ(X, Al ®y Q).

For the explicit computation, one may be interested in the results in the
following papers.

Zx,(T) = (2.39)

[KaLu] Kato, G. and Lubkin, S., Zeta Matrices of Elliptic Curves, Journal of
Number Theory, 15, No. 3, (1982), 318-330.

[KaChZ] Kato, G., On the Generators of the First Homology with Compact Supports
of the Weierstrass Family in Characteristic Zero, Trans., AMS., 278, (1983),
361-368.

[KaZM] Kato, G., Liftedp-Adic Homology with Compact Supports of the Weierstrass
Family and its Zeta Endomorphism, Journal of Number Theory, 35, No.2,
(1990), 216-223.

5.24 Letter from Dwork

Here is the quotation from a letter written by B. Dwork? which may give more
insight into the connection between Lubkin’s p-adic cohomology and Dwork’s
work on p-adic analysis.

’In the early 1980’s a few letters addressed to the author were received from Professor B. Dwork. Only the
copy of this letter was sent to me (rather than the original one) where the date was cut off in the process of
copying. Hence the exact date cannot be identified.
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“[...]1 I have studied the family of elliptic curves
Y2=X(1-X)1-)\X)

of my book (Springer 1982) and in particular the appendix by Adolphson. I
have also studied X3 + Y3+ Z3 — 3T XY Z = 0 (§8 Ann. of Math. 80, (1964),
pp 227-299).

I have never made a detailed study of Y2 = 4X3 — g, X — g3. However the
relation between those different families is well known and one can pass from
the A to j invariant and vice-versa.

If however I were to start a study of the Weierstrass family, I would suggest
the following: Let k = Q((,), (5 = 1, 7P~1 = —p, 7 € k. Let . be the ring
of all polynomials in k[t, X] spanned by monomials #! X™ such that 3] > m.
Let L be the completion of . in the sense of series

= Apnt'X™ € k[[t, X]]
3l>m

which converge in a polydisk [t| < 1 +¢, | X| <1+e.
The key to the study of

Y2 = f(2)(=4X° — g2 X — g3)
is the operator
a=ot"s F(X,1)
F(X,t) = expr((4X® — 92X — g3)t — tP(4X™ — gh XV — gF))

(say p #2,3).
The cohomology is given by the space
Wagpgs = L/D1L + Dol = L /D1.L + Dy (2.40)
(where the isomorphism (2.40) is subject to conditions such as |g3| = |g2| =
Al =1, A = g3 — 27g3) where
1 0
Di=—F—o0X— ot™2 exprtf(X)
t"2expmtf 0X
1 0
Dy=———o0t—o 2 exptf(X)
t~zexpmtf Ot

1.€e.,

)
Di=Xoo+ Tt(12X3 — gu X)
o 1 5
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Furthermore,
-1
a:te L (et s F(X, 1))

gives by passage to quotients a map of
& Wgogs — Wgargs-

When we specialize gs, g3 such that go = g5, g3 = g4, then & becomes an
endomorphism, and its characteristic polynomial gives the zeta function of the
reduced curve.

The differential equations of deformation are given by the actions of o, , 0,
on %545

1

1
Ogy = —4————0——o0t 2exptnf
2 rexptnf 092
1 0
093:707Ot_%exptﬂ—f

tféexp trf 993

ie.,
0
O'g2 = 8792 —mtX
0'93 = 8793 — mt.

The matrix & (defined above for |g2| = |g3| = |A| = 1)isno doubt holomorphic
as function of go, g3 on a set of the type

lg2| <1+e€, JA[>1—¢
lgs| < 1+e.
An account of this theory at the cochain level (i.e., of « but not of &) may

be found in Adolphson’s article recently published in Pacific J. Math, “On the
Dwork Trace Formula".

Remark 18. See the following paper and references in this paper.
[Dwork] Dwork, B., p-Adic Cycles, Pub. Math. LH.E.S., 37, (1969), 27-116.

Recent works of K.S. Kedlaya on zeta function computation through p-adic
cohomology can be found in

[Ked] Kedlaya, K.S., Counting Points on Hyperelliptic Curves using Monsky—
Washnitzer Cohomology, Journal of the Ramanujan Math. Soc., 16, (2001),
323-338.
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5.3  Exposition on Z-Modules

As in Exposition 5.1 in Chapter V, we will introduce the fundamental notion
in the theory of Z-modules where Z is the sheaf of differential operators with
holomorphic function coefficients over a complex manifold X or C". Refer-
ences for Section 5.3 are as follows:

[KashMT] Kashiwara, M., Algebraic Study of Systems of Partial Differential Equations,
(Master’s Thesis, Tokyo University, December 1970), translated by A. D’
Agnolo and P. Schneiders, Mémoirs de la Sociét¢ Mathématique de
France, Sér. 2 63, (1995), 1-72.

[KashAMS] Kashiwara, M., D-Modules and Microlocal Calculus, (Translation of Daisu
Kaiseki Gairon by Matsumi Saito), Translations of Mathematical Mono-
graphs. Vol 217, AMS (2003).

Let .# be a sheaf of germs of Z-modules which we call simply a “%-
Module”. Suppose that the sheaf .# is generated by finitely many w1, uo, . . . , Um,
over 7. Namely, {u1, ug, ..., un} is a set of generators for the Z-Module .7 .
Then we have the following epimorphism

G —> H —=0 (3.1
defined by
(A U1 @ AU @ - @ ApUp) - uw = Ayug + Asug + -+ - + A, (3.2)

where '
J
UjZ[O,...,O,l,O,...,O}, j:172,...,m
is the canonical basis for the free module ™. By the Noetherianess of Z,

ker u of the epimorphism in (3.1) is also finitely generated over &. Let this
epimorphism be -v:

P —>keru 0 (3.3)
where generators vy, va, . . ., v; for keru C 2" can be written
v; = Pj Ui + PjpUs + -+ - + Pjr, Uy, (3.4)

and the epimorphism -v is given by
(BiVi @ BoVa @ -+ @ B Vin) - v = Byv1 + Bava + - -+ + By,

with
V;=10,...,0,1,0,...,00€ 2!,  j=1,2,....m.
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From (3.1) and (3.3) we obtain

X / (3.5)

where P = 1 o v. Thatis, for [By, B, ..., Bj] € 2' we have
([Br,Ba, ..., B] - P)-u= (([B1, Ba,..., Bi] - v)t) -u = 0. (3.6)

Let P be the [ x m-matrix associated with (3.4) with the entries in &. Then for
the m x 1-matrix
u1
U2
u =
Um,
the composition P o u of homomorphisms as expressed in (3.6) may be re-
written as follows:
Pryuy + Proug + -+ - + Py =0
Pyruy + Pyoug + -+ - + Poppuy, = 0
: : : (3.7)

Priuy + Poug + -+ + Py =0,

which is a system of partial differential equations.
Furthermore, beginning at (3.5) we obtain a free resolution of the Z-Module

M
@T\ Y P/@
ker P ker u (3.8)

A NVAN

Let 9.4 be the category of Z-Modules over X where morphisms of 2.4
are Z-linear homomorphisms. Let & be the sheaf of germs of holomorphic
functions on X. The sheaf & can be regarded as a Z-Module: for P =
Yoo fa(2)0* € 2, (where f(2) € 0.) and h(z) € O, at the stalks at z,
Ph € 0 is defined by

Z fa(2)0%h(z

U

M 0
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where

e (Y (L)

are C-linear partial differential operators. Then we will consider the set
Homguﬁ(%, ﬁ) = %m@(%, ﬁ) (3.9)

of morphisms in the category of Z-Modules. The right hand-side of (3.9) is
the sheaf of vector spaces over C of all Z-linear homomorphisms from .Z to
0. Let f € Homg(M,0)andlet f(u;) = f; € 0. Thenforeach1 <i </,
we have f(3_7"; Pjju;) = 0. Namely,

T3 Pus) = 3 Pyf(ug) = 3" Pyfy = 0.

Therefore, morphisms in Zomy (.4, ¢') may be considered as holomorphic
solutions for the system of differential equations expressed as (3.7) of the Z-
Module .. The left exact contravariant functor .##om g (-, ©) is said to be the
solution functor in O from the category ¥.# of %-Modules. On the other
hand, the covariant left exact functor .#0m (0, -) is said to be the de Rham
functor. The Z-Module @ is often said to be the de Rham Module. Since we

have 5 5
6’&9/9<8—21) +---+9(a—zn),

we get the free resolution of &

[%7"'73271}': u
gm 9 7 0. (3.10)
Namely, as a system of equations we have
d
ZJu =0
(6?2) (3.11)
g :
(g2, )u=0

Such a solution u satisfying (3.11) is a constant. That is, the solution functor
Homg(-, 0) takes (3.10) to

0 — Homg(0, 0) — Homg(D, O) — Homg(I™, O) —= - - -

i:: i:: l% (3.12)
0 (C ﬁ ﬁn e,
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Namely, the sheaf .720m ¢ (0, O) of solutions in & of the de Rham Module &
is the constant sheaf C. In general, for the Z-Module .# represented by the

free resolution

Q P P gm 0

|
0 M 0
as in (3.8), via the left exact functor JZomy(-, 0), we get

0 Homo (M, 0) % Homo(T™, 6) % Homg (7', 0) % -
lz lz (3.13)
om o'

That is, the &-solution sheaf #Zomqy (4, 0) is the sheaf ker Pin (3.13). In
terms of notions in Chapters II of derived functors we have

Homog(M,0) =~ ROHomg(-, O\ M = A (Homy(2°, 0)) = ker P
Eutl (M, O) =R\ Homy(-, O)M = A (Homy(2°, 0)) = ker Q/im P

where 2° is any projective (or free) resolution of .Z. In terms of the notions
in Chapter IV on derived categories, for a quasi-isomorphic complex Z° to a
2-Module ., the complex in (3.13) corresponds to

RAoma (-, O)M = RAomog (M, O)

sothatits j-th cohomology R? #om g (4 , 0) = éaxtj;j(//l, 0),j=0,1,2,....
In addition to the two references at the beginning of this Exposition, the
following books are recommended.

[Bjork] Bjork, J.-E., Analytic Z-Modules and Applications, Kluwer Acad.
Publ., 1993.

[Borel] Borel, A., et al, Algebraic Z-Modules, Perspectives in Math. 2, Academic
Press, 1987.

5.4  Cohomological Aspects of 2-Modules

The theory of hyperfunctions was developed by Mikio Sato in the 1950’s as
a generalization of the notion of a Schwartz distribution. See

[Sato] Sato, M., Theory of Hyperfunctions, I, 11, J. Fac. Sci. Univ. of Tokyo,
Sec. I, 8, (1959), 139-193, 387-437,
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Figure 5.3.  Sato and the head of the author’s son, Kyoto, 1988

where the concept of relative cohomology with the coefficient in the sheaf of
holomorphic functions is needed to define the sheaf of hyperfunctions.

We will give a brief discussion on the sheaf % of (germs of) hyperfunctions
and the sheaf € of (germs of) microfunctions. The serious reader can consult
the following book.

[K3] Kashiwara, M., Kawai, T., Kimura, T., Foundations of Algebraic Analysis,
Princeton Univ. Press, Princeton Math. Series 37, 1986.

Even more ambitious readers can read:

[SKK] Sato, M., Kawai, T., Kashiwara, M., Microfunctions and Pseudo-Differential
Equations, Lect., Notes in Math., 287, (1973), Springer-Verlag, 265-529.

Let & be the sheaf of holomorphic functions over C™. Then for open sets
W C V in C", we have the restriction homomorphism & (V) — &(W) of
abelian groups. As in Subsection 3.4.1, we can interpret this restriction homo-
morphism as the morphism of global section functors:

I(V,-) — T(W, ). (4.1)

Then define the functor I'(V, W, -) as the kernel of (4.1) evaluated at a sheaf.
Namely, we get

0 —>T(V,W, ) —=T(V,) —=T(IV,-). (4.2)

For a flabby sheaf .% (and for an injective sheaf), by the definition we have the
short exact sequence

0—=T(V,W, ) —=TD(V,F) —=T(W,F) —0.
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(See Subsection 3.4.2 and Notes 17 in Chapter III.) Let  := R™ N V. Then
by taking W =V — Q in (4.2), the exact sequence (4.2) induces the long exact
sequence of cohomologies:

0—=T(V,V -Q,0)—=T(V,0) —=T(V - Q,0) —

—H(V,V - Q,0)—H\(V,0) —H'(V - Q,0) —  43)

Let V' C V be another open set in C™ and let ' := R™ N V’. Then we have
the restriction homomorphisms

0——=I(V,V —-Q,-) rv,) ——=IT({V -Q,-)

i l l

0o—T1T(WV V' -Q ) —=T(V',.) —=T(V' =, .).

The restriction I'(V, V — Q,-) — I'(V/, V' — €', -) induces

RIT(V,V — Q,0) —=RIT(V',V' =, 0)
(4.4)
W,V -Q,6) —=H{V V-, 0).

Namely, V' ~~ H/(V,V — Q, 0) is a presheaf over C". Denote the associated
sheaf by 47, (0). The definition of the sheaf 2 of hyperfunctions (of Sato)
depends upon the following profound theorems of K. Oka and H. Cartan:

Theorem 19 (Oka’s Coherence Theorem). The sheaf O is coherent.

Theorem 20 (Cartan’s Theorem). All the higher cohomologies vanish, i.e.,
HY(V,0) =0, j > 1, where V is a domain of holomorphy.

See the following references to understand the meaning of these theorems.

[GrRem] Grauert, H., Remmert, R., Coherent Analytic Sheaves. Grundlehren
der Mathematischen Wissenschaften 265, Springer-Verlag, 1984.

[Horm] Hoérmander, L., Introduction to Complex Analysis in Several Variables,
North-Holland Math. Library Vol 7, North-Holland Publ. Co., 1973.

[FG]  Fritzsche, K., Grauert, H., From Holomorphic Functions to Complex
Manifolds, Graduate Texts in Mathematics 213, Springer-Verlag, 2002.
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Figure 5.4. Kiyoshi Oka. This photo was provided by Mrs. Saori Matsubara (Oka’s daughter).

The only non-trivial associated sheaf 7, () is said to be the sheaf % of

(germs of) Sato’s hyperfunctions on R", where .74, (€') = 0 for j # n. Note
that the hyperfunction sheaf % = J#3. (0) is the n-th derived functor of

49, : (Sheaves over C") ~~ (Sheaves over C") :

A0 (-
(Sheaves over C™) k()

(Sheaves over C™)

{
;
ST (v, 4.5)
5

'
Ab.

Then from (4.5) we get the composite functor spectral sequence
Ep" = HP(V, A34.(0)
abutting upon HP(V, V' — Q. &). In particular, for p = 0,

EY™ = T(V, 65.(0)) ~ H*(V,V — Q, 0)
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holds, i.e., V ~» H"(V,V — Q, &) is a sheaf. For an open set U containing V/,
the excision isomorphism (4.49) in Chapter III implies the isomorphism

HY(U,U - Q,0) = H"(V,V —Q, 0).

In fact, the original idea of M. Sato was to capture a hyperfunction as the sum
of boundary values of holomorphic functions. See [K3], [Sato], or

[KaStr] Kato, G., Struppa, D.C., Fundamentals of Algebraic Microlocal Analysis,
Pure and Applied Math., No. 217, Marcel Dekker Inc, 1999

for details and the historical background. As in (4.2) the sequence of functors
0—T(V,V-Q, ) —=T(V,") —=T(V - Q,)

induces the following triangle corresponding to the long exact sequence (4.3):

NV, V-Q,0) NV —-Q,0)

N

in the derived category D(Ab). As noted earlier, for j # n,

RIA5.(0) = 0 (4.6)

and from (4.5) we have I'(V,V — Q, 0) ~ TI'(V, #,(0)). Therefore from
(2.18) in Chapter IV we get
RT(V,V - Q,0) =R< ( -)o%’ﬁé]n)
- RP(V, A (0 >>
By letting Z(2) := H*(V,V —-Q, 0) = I'(V, 7. (0)), the sheaf % of hyper-

functions can be regarded as a sheaf over R”. Then Z is a flabby sheaf. Namely,
for open sets 2 C Q' in R™, the restriction homomorphism is epimorphic

BQY) — B(Q) —0.

The flabbiness of the hyperfunction sheaf plays an important role in the appli-
cations to partial differential equations.
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Note that hyperfunctions in one the variable case, i.e., n = 1, does not need
cohomology. This is because Z(Q2) = HY(V,V — Q, &) and H(V, 0) = 0
for any V in C. Namely, we have the exact sequence

0—=T(V,V-Q,0)—=T(V,0)—=T(V -Q,0) —

4.7)
——HYV,V - Q,0)

0

and furthermore, analytic continuation implies I'(V, 0) — I'(V — Q, 0) is a
monomorphism. That is, by the exactness of (4.7), the global sections of the
sheaf of hyperfunctions over {2 C R become

oV -Q)/oV) = B(Q)=HY(V,V - Q,0).

For example, if Q@ = {0}, then 1/z € &(V — {0}). The Dirac delta function
as hyperfunction is given by the class

[1/2] € 6(V —{0})/6(V

See the references mentioned earlier for further topics on hyperfunctions.
Next we will give a definition of the sheaf ¢ of (germs of) microfunctions
defined on the cotangential sphere bundle S*R™. Let

S*R"”

\/

be the canonical projections onto R™ from the tangential sphere bundle SR"
and the cotangential sphere bundle S*R"™. We write (z,7) and (x, £) for points
on SR™ and S*R", respectively, where 7 := x + in0 and £ := z + i£oc as in
[K3]. Let C'bea blowing up in C" along R", i.e., C" can be regarded as the
disjoint union C* = (C" — R™) LU SR™. Define

IS'SR™ = {(,&,7) | (&m) > 0}
i.e., half of the fibre product of SR™ and S*R". We have
15*SR"”

PN

(ET/‘ ~—SR"? S*R"™

o~ 7

C’n < )Rn



Cohomological Aspects of P-Modules 177

By various purely codimensionality results we can construct the sheaf & of
microfunctions as follows. For the sheaf 7—! ¢, SR™ is purely 1-codimensional:

A (T7IO) =0, j#1 (4.8)
where stjRn (1710) is the associated sheaf to the presheaf
V—H(V,V-SR"NV,710)

for an open set Vin C". (This is Proposition 2.1.1 of [K3].) Next, for the sheaf
7 k. (171 0) over the above 1S*SR™, the projection 7 : 1S*SR™ — S*R™
is purely (n — 1)-codimensional in the following sense:

RIT(r ' M (7710)) =0, j#n—1L (4.9)
(This is Proposition 2.1.2" in [K3].) Then the sheaf ¢ is defined by
€ =R (L (171 0)). (4.10)

Next we will prove that the sheaf % as defined in (4.10) can also be expressed
as A g, (771 0). For the projection

S*R™ x Cr —>@71,

apply the Leray spectral sequence in Subsection 3.4.7 to

(Sheaves over S*R™ x @) (Sheaves over @L)

1

=
Sz
<t

ey —VNSR™,)

S~

>
o

where T (-) := I'(V x V*,V x V* =V x V* N SR”,-). That is, the initial
term is given as

EP? = Hp(f/, V-Vn SR", Rqﬁ*(w_l(T_lﬁ)))
abutting upon
H'(V x V*V x V* =V x V*NSR", 7 (7 10))

where V and V* are open sets in C" and S*R™, respectively. we can take
contractible V* so that HP(V*, 771¢) = 0 for p # 0. Then we get

710 forq=0

Rim(n ™' 0) = {0 for g # 0
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Namely, only E2 are non-trivial:
EPY = HP(V,V -V NSR", 77 10).
From the purely 1-codimensionality of SR™ for 7=, i.e., (4.8), we get
W_lt%pS%R" (7_1ﬁ) = %irlfl(s]gn) GG 0)) = %ﬂéls*w (”_1 (r10)).

Let us compute the higher direct image

1 1
EP* = RpT*(«%?S*SRn(W Lr=1o)).
Since we have
—2,2 1 +2,0
0=E} By B0 — o,

EP' 2 B! is isomorphic to the abutment

RV (A ig.gza) (7 (771 0)).
Again by the pure (n — 1)-codimensionality of 7! 5#kL, (1710) for 7, ie.,
(4.9), we get

By = R (A (7 (71 0)))

SR™
Then the abutment becomes

Rn(T*a}f%OS*SRn)(’/F_l(T_lﬁ».
Since we have 1S*SR" = 771(S*R") we get
R (1 ) (71771 0)) e R (A (7 (71 0)).
Namely, we get the sheaf
€ = R (17 A (771 0)) = R A (71 0),

i.e., we obtain
~ -1
C ~ Hipn (" 0).

See any reference mentioned above for the fundamental exact sequence of
sheaves o7, 28 and € of real analytic functions, hyperfunctions and microfunc-
tions:

0 of B 6 0.
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5.4.1 The de Rham Functor

Let 2 be the sheaf of germs of holomorphic (linear) differential operators
over an n-dimensional complex manifold X. Then we have two functors: the
solution functor #omg(-, €), a contravariant functor from the category Z.#
of 2-Modules to the category C¥ of sheaves of C-vector spaces. Namely, we
have

Homg(-,0) : DM ~ CV

such that at z € X the stalk #omg (4 ,0), = Homgy, (M, O,) is amodule
over C,, of the constant sheaf C. The other functor #om (0, -) is covariant
from 2. to C¥ which has also been mentioned in Exposition 5.3 and called
the de Rham functor. Then define the complex of sheaves of p-forms with
coefficients in a Z-Module .# as follows:

QA ) :=Q° R¢g M ~Homg(N\*O, A ),

where
dI;// : Qp®ﬁ//—>9p+l Ro M

is defined by

&’ (wem)=d'wem+ Z(dpﬂzi Aw)® (aii)m.
i=1

Note that © = 20 is the holomorphic tangent sheaf, i.e., f € @5,(;1) can be
written as

f(2) + f2(52) + -+ fa(3E)

using local coordinates (x1, x2, . .., T, ). Also, Q° is the sheaf of holomorphic
p-forms on X. Then by replacing .# by 2 we get the following free resolution
(4.11) of the right Z-Module 2":

d% dg
lﬁ (4.11)
QTL
where
d% (1) =>" dr ® (a%i), and @12)
d(w®ly) =d(w)®@ly—wed)(ly)

and in general

) (wely) =d’(w) ®1ly + (-1)Pw® d%(1y) (4.13)
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forw e QP and 19 € Z. A right Z-Module structure of 2", the highest form
on X, is defined by

(fdwr A Adan) (52) = (52) (N)day A= Aday,. (4.14)

Note also that the augmentation € : Q" ® 2 — ™ in (4.11) is defined by the
right 2-Module structure of Q™ in (4.14). On the other hand, © = 20 is
a free ﬁ—Module as we noted. The Koszul complex A®(Z"™) associated with
(8%1, cees 8:2 ) becomes a free (projective) resolution of &

1 2
Oe.@e‘s9&@/\1@«59@@%@«---e.@@W\”@eo
le, (4.15)

o

where the augmentation €’ is defined by €'(14) = 14 € 0, i.e.,e(P®u) = Pu
for P € 9 and v € €. The morphism 89 : 9 @45 N0 — 2 @45 NI710O is
defined by

q
SUP@ (01 A A0 =D (~1)7'PO @ (Br A== A A= Ay)
=1
+ Y (=D)TFP @ (04,06 AOT A AN AO A Ay
1<i<k<q

for P € Zand 6, € ©,i = 1,2,...,n, where [0;, k] 7 0;0, — 0,.0;. In
particular, 6*(P ® 0) = P6. Namely, im ' = 37" | 7(52> -). Consequently,
the 0-th homology of (4.15) is the isomorphism induced by the augmentation

¢/. That is, ﬁ<—@/(821 . i).

’ Oz,

Let us extend .#omy(-,-) to functors from the category Z. of left Z-
Modules to the derived category D(Z.# ). Namely, we have

R #omy(-,-) : D(ZM) ~ D(CY).

For example, R#om (O, .#') can be computed by the free resolution (4.15)
of 0 as

RAomg (6, M) = Homg(D @4 O, M)

~ Homeg(N°O, M) ~
~ O Qe M =0(M).

Q

Therefore, in terms of the cohomologies we have

Eut'y (O, M) = AT (Q°(M)).
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Note also that the contravariant functor .72om 4 (-, Z) gives the free resolution
of Q" asin (4.11):
RAOM (O, 2) =~ Q* @6 D.

Namely, we get

i Aom., = &ut! = ‘
{R%ﬁomj(ﬁ,@) Eutly (0, 2) =0  forj#n (4.16)

R"Homq (O, D) = Extl(0,2) = Q".

Conversely, (4.11) can be used to compute R#om4(Q", Z). Namely we
obtain the free resolution (4.15) of & by the functor #omy(-, Z) via (4.11):

RIAomq (", D) = Extl,(Q", 2) =0 forj#n @17
R #omq(Q", 9) ~ 0. ’
Notice that from (4.16) and (4.17) we have
Rotom g (RAOMH (O, D), D) =~ RAOM4(Q", D) = O, (4.18)

ie., &utl (6ut'}(0,2),2) ~ O. Also notice that for the free resolution
Q%(2) = Q" of Q" as given in (4.11), the right exact functor - ®¢ A
induces

0= @M=D) @M~ V(D) M-S @ M
0—Qe —Q' ol — —M—Q"M,
4.19)

where in the upper sequence tensor products are over & and in the lower, over
0. The homology and the cohomology of the sequence in (4.19) provide the
isomorphism

Tory (", M) = Eutl, (0, M), (4.20)

L
or V" Qg M ~ RHAomy (0, #) in terms of derived category notion. Fur-
thermore, for .# = ¢ we have

RAm (0, 6) ~ Q°.

By the Poincaré Lemma we have

0, 7#0

Rj%m@(ﬁ, ﬁ) = éﬁ;t{é(ﬁ, 6") = %j(QO) = {C
y J =
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That is, as an object of D(C?), R7#om (0, 0) is isomorphic to C.
Let ./ be a left Z-Module and let Py — .4 be a projective resolution of
4. Then we have

Extl (N, D) = A (Homg(Pe, D).

Let 'P, be a complex of flat right -Modules quasi-isomorphic to the complex
Homg(Pe, D), 1.e., (' Py) 7 HI(HOom o (Pe, Z)). Thenlet €7 (N, )
be the functor, contravariant in .4 and covariant in .# defined by

APy @ M).

Then €7 (A, .#) is an exact connected sequence of functors. We have the
following spectral sequence abutting upon €7 (N, A ):

EYY = Jor? (Extl (N, D), M ). (4.21)

Note that for a finitely presented -Module .7 (i.e., .# is coherent as a -
Module), €7 (AN, A ) becomes &xtl, (A, .4 ). This is because we have

Homag (-, D) Qg M = Homg(-, M)

for a finitely generated projective Z-Module .#. As an object of the derived
category, it is

L
RAtomag( N, D) Qg M

inducing the spectral sequence (4.21). For .4#" = ¢ and a coherent Z-Module
M , the spectral sequence (4.21) gives the isomorphism in (4.20). Notice also
that the universal coefficient spectral sequence (2.38) and the spectral sequence

L
(4.21) associated to R#omq (N, 9) ®q # are essentially the same. See
[KaStr] for details.

5.4.2 Cohomological Characterization of Holonomic
2-Modules

The notion of the characteristic variety V' (.#') of a Z-Module . is central
for the microlocal analysis of .#. The holonomicity of .# is defined in terms
of the dimension of the characteristic variety V(.#). A Z-Module .Z is
said to be holonomic if the dimension of V' (.#) is the smallest possible, i.e.,
dim V(.#) = n. Such a system of partial differential equations is called a
maximally overdetermined system. It is known that the holonomicity condition
is equivalent to

é"xt];j(///, 2)=0, j #n.
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(See any of the references for the proof.) We have already observed in (4.18)
that R7Z0om o (RAom 4 (0, 2), P) = €. We will prove that for a holonomic
2-Module .# we have

Eut (s (M, D), D) ~ M. 4.22)

Note that 51:25]9(//1 ,2) = 0 for j # n implies the following: for an exact
sequence of holonomic left Z-Modules

0 M M M 0,
we get
0 —> Et™ (M, D) —> EWt (M, D) — Et (M, D) —0.

That s, the contravariant functor £xt7, (-, Z) from the category of left holonomic
2-Modules to the category of right holonomic -Modules is an exact functor.
In order to prove (4.22), first take a projective resolution of .Z as

Pe S M. (4.23)
By the contravariant functor #Zomgy (-, 2), from (4.23) we get the complex

“P' = %my(?., 9)

ji”om@(s,@)T

Then let
'fPO /?1 ce /g;j
Q0,0 Ql,O e Qj,O
4.24)
QO.—1 QL1 .. Qi1

be Cartan—Eilenberg resolution of 'P® with projective object Q*®. Then the
contravariant functor J#omy (-, Z) carries the double complex (4.24) in the
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fourth quadrant to the following double complex in the second quadrant:

e lgfj,l [ /Q—l,l S /QO,l

(4.25)
e > lgfj,O e e lQ—l,O S /QO’O
e > I/j)7j70 [ //93—170 RN //rJ;O,O

where "PI0 .= SHomy (P, D) and 'Q7I = Homy(Q0 7", 7). Then we
have the spectral sequences associated with the double complex (4.25). Namely,
by (3.7), (3.8), (3.9),

EO—PJ] — /Q7p,q’ /Eg,—q ='Q—ap
EP = (97, BT = A1) (4.26)
EQ—IM] — %;p(%q(lg.’.)% /Egy—q — jﬁp(%gq(lg.’.»

both abutting upon the total cohomology 7" ('Q®) where

o= @ o

ptg=n
Since Somy (-, Z) is a left exact functor we have
BP0 = 0971 ~ Homo ('PPO, D).
Moreover, for the projective object ‘PP0, we get
"PPO = Somg('PPY, D) = Homg(Homgy(PP, D), D) ~ PP,

Then from

P—p Pp—(p—1) —— -+,

we get B, 7 0 =0 for p # 0, and we have ES’O ~ ./ . Note that the diagram
(4.25) is vertically exact; i.e., for ¢ # 0 we have By "% = J£('Q7P*) = 0.
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Let us re-write 7’ ('Q7P*) as follows:

AL(QP®) = RiAomy (-, D) PP =
= Rq*%m_@(‘v .@)(&%ﬁl@(, 9)9)7p>

Thatis, F/; P4 associated with the double complex (4.25) can be considered as
the Eg’o-term of the composite functor of

Hdome(+,2) .
left— 2.4 20.7) right— 2.4

;
g Home(-.7) (4.27)

g

left— 2.4 .

Namely, we have
E;PU4.25) = B3 = R1tomg (-, 2) (RO Homy (-, 2)(PP)).
However, for the projective object P~?, we have
Homag(Homqg (PP, D), D)~ PP,
i.e., the composition of two functors in (4.27) is an identity functor on projec-
tives. Since an identity is an exact functor, the abutment £9 = 0 for ¢ > 1.

Therefore, EZ” = 0 for ¢ > 1. Consequently, E; "7 = A ('Q7P*) = 0 for
q > 1. Then

0= B, ' (4.25) — E9°4.25) —= E;7'(4.25) = 0
implies .# ~ EX" ~ EO = #°('Q*) of (4.25).
Let us compute the second spectral sequence in (4.26) induced by the filtra-

tion as in (3.23). We will draw diagrams as we did in Note 16 in Chapter II1.
At the level zero, {E}""?} can be shown as

.. 1 P4 1 ps—q—1
— EO — EO —

= 1Q=4P —— Q=P ——— ...,
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Then we have

"By H9(1Q%2)

Fo ATI(QNY)

o A79('Q%0)
0 0

and
,qu — éamtlgj(gﬂftfl@(%a -@)a -@)

abutting upon that (p — )-th derived functor EP~9 of the identity, i.e., E° ~ .#
for p — ¢ = 0. From the sequence

.. ) pp—2,—p+1 1 P —4q 1 pp+2,—q—1
—_— E'2 —_— E2 —_ E2 _—

0 0

and from 'ER P = FP(EY)/FPTY(EC) = FP(4)/FPTY () where M =
EO = @pzo ELP, we get

"By = Extly(Extly (M, D), D) = ELT" = M

for a holonomic Z-Module .Z .
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EPILOGUE (INFORMAL)

Thank you, Fred, for inviting me to Antwerpen and for suggesting such a
charming title as The Heart of Cohomology.

To Daniel I send “Thanks" for working with me even while so much was
going on in your life.

Thank you, Marieke Mol for teaching me the innocent poem by Paul van
Ostaijen.

Thank you, Chrissie, for checking my English, and Alex for playing great
piano music of Bach, Beethoven, Mozart, ..., everyday.

Please allow me to sing a beautiful poem from the Manyoushu Vol 1, 20:

Akanesasu Murasaki Noyuki Shimenoyuki
Numoriwa Mizuya Kimigasodehuru

To the young reader: only elemental 5 — 7 — 5 — 7 — 7 syllables like the
above Manyoushu poem sometimes can sing the beauty.
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Abutment, 74 Discriminant, 158
Additive category, 17 Distinguished triangle, 131
Additive functor, 16 Double complex, 78
Adjoint, 19 Dual Category, 5

B-rational point, 149
Edge morphism, 102

Category, 1 Effective epimorphism, 32
abelian, 16 Embedding, 8
additive, 17 Epimorphism, 2
derived, 119 Equalizer, 27
dual, 5 Equivalence, 8
homotopy, 41 Exact couple, 77
opposite, 5 Exact functor, 43
small, 1 Exact sequence, 18
subcategory, 7 short exact sequence, 18

subcategory, full, 8
gategory, abelian, 14 F-acyclic object, 95
Cech cohomology, 98, 99 Fan. 21

Cohomology, 40 Filtered complex, 76

Cech, 98, 99 Flabby sheaf, 93
group, 3,93 Functor
object, 93 additive, 16
- pres, 67 adjoint, 19
Coimage, 15 contravariant, 5
Cokernel, 15 covariant, 4
Complgx, 3997 de Rham, 170, 179
deri - embedding, 8
louble, equivalence, 8
filtered, 76 exact, 43
Copro.duct, 1‘% exact connected sequence, 62
Covering family, 28 faithful. 8
Covering sieve, 30 forgetful functor, 7
de Rham functor, 170, 179 full. 8
de Rham Module, 170 fully faithful. §

Derived category, 119 global section, 92
Derived functor, 93 half—exac't, 43
Direct product, 14, 16, 25 hyperderived, 89
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imbedding, 8
isomorphism, 8
kernel preserving, 18
left derived, 51

left exact, 18, 43,93
localizing, 119
representable, 10
right derived, 46
right exact, 43
solution, 170

Germ, 26
Global section functor, 92

Higher direct image, 107
Homotopy, 41
Homotopy category, 41, 117
Hypercohomology

relative, 105

sheaves, of, 95
Hyperderived functor, 89

Imbedding, 8
Initial object, 14
Injective object, 43
enough, 45
Injective resolution, 46
Injective sheaf, 93
Inverse limit
inverse system, 111
Inverse system, 111

Kernel, 2, 14

Lefschetz principle, 162
Left derived functor, 51
Left exact functor, 18, 93
Leray spectral sequence, 107
second, 108
Limit, 22
colimit, 24
direct, 24
inverse, 22
projective, 22
Localizing functor, 119

Mapping cone, 131
Mapping cylinder, 131
Mittag—Leffler condition, 115
Monomorphism, 2
Morphism, 1
edge, 102
homotopic, 41
identity morphism, 3
quasi-isomorphism, 46, 94, 95, 117

Natural Equivalence, 19

Natural Equivalene, 10
Natural Transformation, 7

Object
F-acyclic, 95
injective, 43
projective, 44
subobject, 2
Objects, 1
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axiom, 143
property, 143

p-Adic integer, 150
Precohomology, 67
Presheaf, 6
germ, of, 26
restriction map, 26
section, 26
sheafification, 37
stalk, of, 26
Projective object, 44
enough, 45

Quasi-isomorphism, 46, 94, 95, 117

Refinement, 99

Relative hypercohomology, 105

Representable Functor, 10

Resolution, 46
Cartan—Eilenberg, 81
injective, 46

Restriction map, 26

Right derived functor, 46

Section, 26
Sheaf, 26
flabby, 93
injective, 93
Sheafification, 37
Short exact sequence, 18
Sieve, 29
covering, 30
effective epimorphism, 32
Site, 28, 30
canonical, 33
covering family, 28
morphism, 28
Solution functor, 170
Spectral Sequence, 71, 72
Spectral sequence
abutment, of, 74
first quadrant, 73
Leray, 107
Leray, second, 108
Stalk, 26

Terminal object, 14
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Yoneda embedding, 13
Yoneda’s Lemma, 10

Zero morphism, 14
Zero object, 14
Zeta matrix, 165
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